ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-7-539-558

UDC 004.052.32+681.518.5

CONTROL OF SELF-DUAL DEVICES USING COMPRESSION CIRCUITS BASED ON FULL ADDERS

D. V. Ephanov
PSTU; Department of Automation and Telemechanics on the Railways


T. S. Pogodina
Russian University of Transport, Department of Automation, Remote Control, and Communications on Railway Transport ;


Read the full article 
Reference for citation: Efanov D. V., Pogodina T. S. Control of self-dual devices using compression circuits based on full adders. Journal of Instrument Engineering. 2023. Vol. 66, N 7. P. 539—558 (in Russian). DOI: 10.17586/0021-3454-2023-66-7-539-558.

Abstract. The problem of organizing the control of calculations by a diagnostic parameter characterizing the belonging of the functions calculated by the object of diagnosis to the class of self-dual Boolean functions is considered. The structure of a self-dual device with control of each output separately is described. A structure is proposed for a built-in control circuit using a special signal compression scheme. Such a structure makes it possible to reduce the number of observed outputs and thereby reduce the number of elements in the structure of the built-in control circuit (ICS). Standard circuits of full adders, which are self-dual digital devices, are supposed to be used as signal compression devices. It is shown that such an approach to the ICS organization makes it possible to reduce the complexity of its technical implementation by approximately 8–9% compared to the control of calculations at each output of the diagnostic object. Formulas for estimating the complexity of the implementation of the ICS for each method of its organization are given. Algorithms for the synthesis of ICS with the use of signal compression schemes are formulated. The data obtained by modeling self-dual structures using the considered methods in the Multisim modeling environment are demonstrated. The presented results enable practical synthesis of self-checking digital devices and computing systems.
Keywords: self-checking digital devices, error-detecting in digital devices, built-in error-detection circuit, checking self-duality of signals, self-dual devices, full-adder

References:
  1. Fujiwara E. Code Design for Dependable Systems: Theory and Practical Applications, John Wiley & Sons, 2006, 720 p.
  2. Ubar R., Raik J., Vierhaus H.-T. Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), Information Science Reference, Hershey, NY, IGI Global, 2011, 578 p.
  3. Drozd A.V., Kharchenko V.S., Antoshchuk S.G., Drozd Yu.V., Drozd M.A., Sulima Yu.Yu. Rabochee diagnostirovanie bezopasnykh informatsionno-upravlyayushchikh sistem (Working Diagnosing of Safe Management Information Systems), Khar'kov, 2012, 614 p. (in Russ.)
  4. Dubrova E. Fault-Tolerant Design, Springer Science+Business Media, NY, 2013, XV+185 p., DOI: 10.1007/978-1-4614-2113-9.
  5. Yarmolik V.N. Kontrol' i diagnostika vychislitel'nykh sistem (Control and Diagnostics of Computer Systems), Minsk, 2019, 387 р. (in Russ.)
  6. Mikoni S. Lecture Notes in Networks and Systems, 2022, vol. 442, pp. 238–249, DOI: 10.1007/978-3-030-98832-6_21.
  7. Yablonsky S.V., Gavrilov G.P., Kudryavtsev V.B. Matematicheskaya logika i osnovaniya matematiki (Mathematical Logic and Foundations of Mathematics), Moscow, 1966, 119 р. (in Russ.)
  8. Reynolds D.A., Meize G. IEEE Transactions on Computers, 1978, no. 12(C-27), pp. 1093–1098, DOI: 10.1109/TC.1978.1675011.
  9. Aksenova G.P. Avtomatika i Telemekhanika, 1987, no. 10, pp. 144–153. (in Russ.)
  10. Hessel M., Moshanin V.I., Sapozhnikov V.V., Sapozhnikov Vl.V. Avtomatika i Telemekhanika, 1997, no. 12, pp. 193–200. (in Russ.)
  11. Sogomonyan E.S., Slabakov E.V. Samoproveryaemye ustroystva i otkazoustoychivye sistemy (The Self-Checked Devices and Failure-Safe Systems), Moscow, 1989, 208 р. (in Russ.)
  12. Nicolaidis M., Zorian Y. Journal of Electronic Testing: Theory and Application, 1998, no. 1-2(12), pp. 7–20, DOI: 10.1023/A:1008244815697.
  13. Lala P.K. Self-Checking and Fault-Tolerant Digital Design, San Francisco, Morgan Kaufmann Publishers, 2001, 216 p.
  14. Tshagharyan G., Harutyunyan G., Shoukourian S., Zorian Y. Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, Serbia, September 29–October 2, 2017, pp. 25–28, DOI: 10.1109/EWDTS.2017.8110065.
  15. Saposhnikov Vl.V., Dmitriev A., Goessel M., Saposhnikov V.V. Proceedings of 14th IEEE VLSI Test Symposium, USA, Princeton, 1996, pp. 162–168.
  16. Gessel M., Dmitriev A.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 1999, no. 11(60), pp. 1653–1663.
  17. Saposhnikov Vl.V., Moshanin V., Saposhnikov V.V., Goessel M. Journal of Electronic Testing: Theory and Applications, 1999, no. 3(14), pp. 295–300, DOI: 10.1023/A:1008370405607.
  18. Gessel' M., Dmitriev A.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 2000, no. 7(61), pp. 1192–1200.
  19. Sapozhnikov V.V., Sapozhnikov Vl.V. Gessel M. Samodvoystvennyye diskretnyye ustroystva (Self-Dual Discrete Devices), St. Petersburg, 2001, 331 р. (in Russ.)
  20. Sapozhnikov V.V., Sapozhnikov Vl.V., Valiev R.Sh. Sintez samodvoystvennykh diskretnykh sistem (Synthesis of Self-Dual Discrete Systems), St. Petersburg, 2006, 220 р. (in Russ.)
  21. Göessel M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Concurrent Checking: Edition 1, Dordrecht, Springer Science+Business Media B.V., 2008, 184 p.
  22. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Osnovy teorii nadezhnosti i tekhnicheskoy diagnostiki (Fundamentals of the Theory of Reliability and Technical Diagnostics), St. Petersburg, 2019, 588 р. (in Russ.)
  23. Pat. US747533, Self-Checking Error Checker for Two-Rail Coded Data, W.C. Carter, K.A. Duke, P.R. Schneider, Priority 25 July 1968, Published 26 Jan. 1971.
  24. Sapozhnikov V.V., Sapozhnikov Vl.V. Samoproveryaemye diskretnye ustroystva (The Self-Checked Discrete Devices), St. Petersburg, 1992, 224 p. (in Russ.)
  25. Harris D.M., Harris S.L. Digital Design and Computer Architecture, Morgan Kaufmann, 2012, 569 p.
  26. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody Khemminga v sistemakh funktsional'nogo kontrolya logicheskikh (Hamming Codes in Functional Control Systems of Logical), St. Petersburg, 2018, 151 р. (in Russ.)
  27. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody s summirovaniyem dlya sistem tekhnicheskogo diagnostirovaniya. T. 1. Klassicheskiye kody Bergera i ikh modifikatsii (Summed Codes for Technical Diagnostic Systems. Vol. 1. Classical Berger Codes and Their Modifications), Moscow, 2020, 383 р. (in Russ.)
  28. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody s summirovaniyem dlya sistem tekhnicheskogo diagnostirovaniya. T. 2. Vzveshennyye kody s summirovaniyem (Summed Codes for Technical Diagnostic Systems. Vol. 2. Weighted Codes with Summation), Moscow, 2021, 455 р. (in Russ.)
  29. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Journal of Instrument Engineering, 2015, no. 5(58), pp. 333–343, DOI: 10.17586/0021-3454-2015-58-5-333-343. (in Russ.)
  30. Goessel M., Morozov A.A., Sapozhnikov V.V., Sapozhnikov V.V. Automation and Remote Control, 1994, no. 7(55), pp. 1050–1059.
  31. Morosow A., Sapozhnikov V.V., Sapozhnikov Vl.V., Goessel M. VLSI Design, 1998, no. 4(5), pp. 333–345, DOI: 10.1155/1998/20389.
  32. Zakrevskiy A.D., Pottosin Yu.V., Cheremisinova L.D. Logicheskiye osnovy proyektirovaniya diskretnykh ustroystv (Logical Foundations for the Design of Discrete Devices), Moscow, 2007, 592 р. (in Russ.)
  33. Efanov D.V., Pogodina T.S. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES) (Problems of Advanced Micro- and Nanoelectronic Systems Development), All-Russia Science & Technology Conference, Moscow, Zelenograd, 2022, no. 3, pp. 113–122, DOI: 10.31114/2078-7707-2022-3-113-122. (in Russ.)
  34. Efanov D.V., Pogodina T.S. Informatics and Automation, 2023, no. 2(22), pp. 349–392, DOI: 10.15622/ia.22.2.5. (in Russ.)