ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-7-602-611

UDC 550.380.8; 537.634.2; 537.621.4; 544.723.2; 66.067.8.081.3

METHOD OF PONDEROMOTIVE CONTROL OF MAGNETIC SUSCEPTIBILITY OF DISPERSE SAMPLES AND PARTICLES OF IRON-CONTAINING SORBENTS

D. A. Sandulyak
MIREA – Russian Technological University, Department of Instruments and Information Measuring Systems ; Associate Professor


A. A. Sandulyak
MIREA – Russian Technological University, Department of Instruments and Information Measuring Systems ;


M. N. Polismakova
MIREA – Russian Technological University, Department of Instruments and Information Measuring Systems ;


V. A. Ershova
PhD; MIREA – Russian Technological University, Laboratory of Magnetic Control and Material’s Separation ; Senior Researcher


A. V. Sandulyak
MIREA – Russian Technological University, Department of Instruments and Information Measuring Systems ;


A. Y. Kurmysheva
N. D. Zelinsky Institute of Organic Chemistry of the RAS, Laboratory of Liquid-phase Catalytic and Electrocatalytic Processes; Moscow State University of Technology “STANKIN” ; Researcher


I. A. Solovev
MIREA – Russian Technological University, Department of Instruments and Information Measuring Systems ;


Read the full article 
Reference for citation: Sandulyak D. A., Sandulyak A. A., Polismakova M. N., Еrshova V. А., Sandulyak А. V., Kurmysheva А. Yu., Solovev I. A. Method of ponderomotive control of magnetic susceptibility of disperse samples and particles of iron-containing sorbents. Journal of Instrument Engineering. 2023. Vol. 66, N 7. P. 602—611 (in Russian). DOI: 10.17586/0021-3454-2023-66-7-602-611.

Abstract. In order to increase the efficiency of using powder magnetic sorbents in water purification technology, when one of the key stages of this technology is the rapid isolation of spent sorbent by magnetic separation, the control of the magnetic susceptibility χ of the individual particles of such sorbents is needed. The analyzed methodology of determining magnetic susceptibility is based on obtaining experimental dependence of the magnetic susceptibility of the dispersed sample on the volume fraction γ in it of controlled particles and identifying the linear initial section of this dependence (limited by criterion value γ = [γ]), the specified section of this dependence indicates the practical absence of magnetic interaction of the particles. So at γ = [γ], χ -values are determined as χ = /γ. By ponderomotive method (using modernized magnetometer with spherical pole pieces for creating zone of a stable inhomogeneity field) γ -dependence of is obtained for magnetic sorbent (carbon sorbent with inclusions of magnetite and maggemite), and value of [γ] is found. The magnetic susceptibility χ of the particle in the field of strength H = 61 kA/m is determined from its linear section, up to the criterion value [γ]. It also seems possible to obtain an expanded field dependence for χ.
Keywords: iron-containing sorbent, magnetic susceptibility, modernized ponderomotive-type magnetometer, criterion of volume fraction of particles

References:
  1. Fomenkova А.А. Journal of Instrument Engineering, 2022, no. 2, pp. 140–147, DOI: 10.17586/0021-3454-2022-65-2-140-147. (in Russ.)
  2. Xiao H., Huang D., Pan Y., Liu Y., Song K. Chemometrics and Intelligent Laboratory Systems, 2017, vol. 161, рр. 96–107, DOI:10.1016/j.chemolab.2016.12.009.
  3. Vedenyapina M.D., Kurmysheva A.Y., Ershova V.A., Kryazhev Y.G. Solid Fuel Chemistry, 2021, no. 5, pp. 285–305, DOI:10.31857/S0023117721050078.
  4. Mohan D., Sarswat A., Singh V. K., Alexandre-Franco M., Pittman Jr. C.U. Chemical Engineering Journal, 2011, vol. 172, рр. 1111–1125, DOI:10.1016/j.cej.2011.06.054 .
  5. Feng Z., Chen H., Li H., Yuan R., Wang F., Chen Z., Zhou B. Science of the Total Environment, 2020, vol. 713, рр. 136423, DOI:10.1016/j.scitotenv.2019.136423.
  6. Jiang Y., Xie Q., Zhang Y., Geng C., Yu B., Chi J. International Journal of Mining Science and Technology, 2019, vol. 29, рр. 513–519,DOI:10.1016/j.ijmst.2019.01.002.
  7. Liu Y., Huo Z., Song Z., Zhang C., Ren D., Zhong H., Jin F. Journal of the Taiwan Institute of Chemical Engineers, 2019, vol. 96, рр. 575–587, DOI:10.1016/j.jtice.2018.11.017.
  8. Ito D., Nishimura K., Miura O. Journal of Physics: Conference Series, 2009, vol. 156, рр. 012033, DOI:10.1088/1742-6596/156/1/012033.
  9. Xue Z., Wang Y., Zheng X., Lu D., Li X. Separation and Purification Technology, 2020, vol. 237, рр. 116375, DOI: 10.1016/j.seppur.2019.116375.
  10. Liu Y.-L., Li D.-W., He J. et al. Review of Scientific Instruments, 2018, vol. 89, рр. 105103, DOI: 10.1063/1.5016570.
  11. Watarai H., Suwa M., Iiguni Y. Analytical and Bioanalytical Chemistry, 2004, vol. 378, рр. 1693–1699, DOI:10.1007/s00216-003-2354-7.
  12. Sinha S., Ganguly R., De A.K., Puri I.K. Physics of Fluids, 2007, vol. 19, рр. 117102, DOI:10.1063/1.2780191.
  13. Zeng J., Tong X., Yi F., Chen L. Minerals, 2019, vol. 9(9), рр. 509, DOI: 10.3390/min9090509.
  14. Mariani G., Fabbri M., Negrini F., Ribani P. L. Separation and Purification Technology, 2010, vol. 72, рр.147–155, DOI:10.1016/j.seppur.2010.01.017.
  15. Hu K., Sun J., Guo Z. et al. Advanced Materials, 2015, vol. 27, рр. 2507–2514, DOI: 10.1002/adma.201405757.
  16. Baik S.K., Ha D.W., Ko R.K., Kwon J.M. Physica C, 2012, vol. 480, рр. 111–117, DOI:10.1016/j.physc.2012.04.036.
  17. Wu T.H., Mao J.H., Wang J.T., Wu J.Y., Xie Y.B. Tribology Transactions, 2009, vol. 52, рр. 623–631, DOI:10.1080/10402000902825762.
  18. Sandulyak A.A., Sandulyak A.V., Kiselev D.O., Sandulyak D.A., Polismakova M.N., Ershova V.A. Pribory, 2018, no. 11(221), pp. 43–51. (in Russ.)
  19. Sandulyak A.A., Sandulyak A.V., Ershova V., Pamme N., Ngmasom B., Iles A. Journal of Magnetism and Magnetic Materials, 2017, vol. 441, рр. 724–734, DOI:10.1016/j.jmmm.2017.06.027.
  20. Golovin V.A., Tyurina S.A., Shchelkov V.A. Russian Technological Journal, 2022, no. 3(10), pp. 93–102, DOI:10.32362/2500-316X-2022-10-3-93-102. (in Russ.)
  21. Ngomsik A.-F., Bee A., Draye M., Cote G., Cabuil V. C.R. Chimie, 2005, vol. 8, рр. 963–970, DOI:10.1016/j.crci.2005.01.001.
  22. Yavuz C.T., Mayo J.T., Yu W.W. et al. Science, 2006, vol. 314, рр. 964–967, DOI: 10.1126/science.1131475.
  23. Sun J., Zhang Y., Chen Z., Zhou J., Gu N. Angew. Chem. Int. Ed., 2007, vol. 46, рр. 4767–4770, DOI: 10.1002/anie.200604474.
  24. Bjork R., Zhou Z. Journal of Magnetism and Magnetic Materials, 2019, vol. 476, рр. 417–422, DOI:10.1016/j.jmmm.2019.01.005.
  25. Diguet G., Beaugnon E., Cavaillé J.Y. Journal of Magnetism and Magnetic Materials, 2010, vol. 322, рр. 3337–3341, DOI:10.1016/j.jmmm.2010.06.020.
  26. Bai K., Casara J., Nair-Kanneganti А., Wahl А., Carle F., Brown E. Journal of Applied Physics, 2018, vol. 124, рр. 123901, DOI: 10.1063/1.5041750.
  27. Kazin P.E., Kulbakin I.V. Metody issledovaniya magnitnykh svoystv materialov (Methods for Studying the Magnetic Properties of Materials), Moscow, 2011, 34 р. (in Russ.)
  28. Patent RU 2789620, Elektromagnitnoye ustroystvo dlya sozdaniya neodnorodnogo magnitnogo polya s zonoy yego stabil'noy neodnorodnosti (An Electromagnetic Device for Creating an Inhomogeneous Magnetic Field with a Zone of Its Stable Inhomogeneity), A.A. Sandulyak, D.A. Sandulyak, V.A. Ershova, M.N. Polismakova, A.V. Sandulyak, D.O. Kiselev, Priority 06.02.2023. (in Russ.)