DOI 10.17586/0021-3454-2023-66-8-680-687
UDC 681.782, 520.3
METHOD FOR OVERALL CALCULATION OF AN INTEGRAL-FIELD MIRROR MODULE
ITMO University, The Center of Applied Optics ;
A. V. Bakholdin
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor, Dean
Read the full article
Reference for citation: Orekhova M. K., Bakholdin A. V. Method for overall calculation of an integral-field mirror module. Journal of Instrument Engineering. 2023. Vol. 66, N 8. P. 680—687 (in Russian). DOI: 10.17586/0021-3454-2023-66-8-680-687.
Abstract. A method for overall calculation of an integral-field mirror module is developed. A schematic solution based on mirror elements is described, features are considered, and an approach to design is proposed. An example of calculating the optical system of the mirror module of the integral field of the KST-3 solar telescope-coronagraph is presented. To achieve the goal, methods for calculating optical systems, mathematical and computer modeling, as well as methods for optimizing optical systems are used. The practical significance of the result lies in achieving a high temporal resolution of solar telescopes while maintaining high spatial and spectral resolution. The considered approaches can be extended for use in the modernization of spectrometers and the expansion of the observatory instrumental park.
Abstract. A method for overall calculation of an integral-field mirror module is developed. A schematic solution based on mirror elements is described, features are considered, and an approach to design is proposed. An example of calculating the optical system of the mirror module of the integral field of the KST-3 solar telescope-coronagraph is presented. To achieve the goal, methods for calculating optical systems, mathematical and computer modeling, as well as methods for optimizing optical systems are used. The practical significance of the result lies in achieving a high temporal resolution of solar telescopes while maintaining high spatial and spectral resolution. The considered approaches can be extended for use in the modernization of spectrometers and the expansion of the observatory instrumental park.
Keywords: integral field spectroscopy, integral field unit, image slicing, image slicer, wide spectral range, astronomical optics, solar telescope
References:
References:
- Bacon R. Optical 3D-Spectroscopy for Astronomy, NY, John Wiley & Sons, 2017, 296 p.
- Mediavilla E. et al. 3D Spectroscopy in Astronomy, Cambridge, Cambridge University Press, 2010, 271 p.
- Grigoryev V.M., Demidov M.L., Kolobov D.Yu., Pulyaev V.A., Skomorovsky V.I., Chuprakov S.A. Solar-Terrestrial Physics, 2020, no. 2(6), pp. 14–29.
- Zherebtsov G.A. Solar-Terrestrial Physics, 2020, no. 2(6), pp. 3–13.
- Bacon R. et al. Proceedings of SPIE, 2004, vol. 5249, https://doi.org/10.1117/12.512397.
- Laurent F. et al. Proceedings of SPIE, 2005, vol. 5965, https://doi.org/10.1117/12.624836.
- Laurent F. et al. Proceedings of SPIE, 2010, vol. 7739, https://doi.org/10.1117/12.857004.
- Calcines A. et al. Journal of Astronomical Instrumentation, 2013, no. 1(2), pp. 50009, https://doi.org/10.1142/S2251171713500098.
- Calcines A. et al. Proceedings of SPIE, 2010, vol. 7735, https://doi.org/10.1117/12.856725.
- Calcines A. et al. Proceedings of SPIE, 2014, vol. 9147, https://doi.org/10.1117/12.2053577.
- Eikenberry S. et al. Proceedings of SPIE, 2004, vol. 5492, https://doi.org/10.1117/12.549150.
- Glenn P. et al. Proceedings of SPIE, 2004, vol. 5492, https://doi.org/10.1117/12.551661.
- Content R. Proceedings of SPIE, 2006, vol. 6269, https://doi.org/10.1117/12.672312.
- Surya A. et al. Proceedings of SPIE, 2020, vol. 11452, https://doi.org/10.1117/12.2561766.
- Kushibiki K. et al. Proceedings of SPIE, 2020, vol. 11451, https://doi.org/10.1117/12.2560431.
- Loupias M. et al. Proceedings of SPIE, 2020, vol. 11451, https://doi.org/10.1117/12.2561374.
- Content R. et al. Proceedings of SPIE, 2020, vol. 11451, https://doi.org/10.1117/12.2562744.
- Chabot T. et al. Proceedings of SPIE, 2020, vol. 11451, https://doi.org/10.1117/12.2562458.
- McGurk R. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2562950.
- Lawrence J. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2563238.
- Content R. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2563127.
- Ozaki S. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2560602.
- Chen S. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2561942.
- Ozer Z. et al. Proceedings of SPIE, 2020, vol. 11447, https://doi.org/10.1117/12.2560359.
- Nelson P. et al. Proceedings of SPIE, 2010, vol. 7735, https://doi.org/ 10.1117/12.857610.
- Wijn A. et al. Proceedings of SPIE, 2012, vol. 8446, https://doi.org/ 10.1117/12.926497.
- Rains A. Proceedings of SPIE, 2018, vol. 10702, https://doi.org/ 10.1117/12.2314336.
- Jarno A. et al. Proceedings of SPIE, 2012, vol. 8449, https://doi.org/ 10.1117/12.926420.
- Allington-Smith J. New Astronomy Reviews, 2006, no. 4-5(50), pp. 244–251, https://doi.org/10.1016/j.newar.2006.02.024.
- Witt E. Proceedings of SPIE, 2020, vol. 11444, https://doi.org/10.1117/12.2562537.
- Peysakhson I.V. Optika spektral'nykh priborov (Optics of Spectral Instruments), Leningrad, 1975. (in Russ.)