ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2023-66-9-771-780

UDC 536.2

MODELING AND CALCULATION OF TWO-DIMENSIONALLY ORIENTED THERMAL CONDUCTIVITY OF HETEROGENEOUS COMPOSITIONS

V. P. Khodunkov
D.I. Mendeleev Institute for Metrology, Saint Petersburg, 190005, Russian Federation; Senior Researcher


Y. P. Zarichnyak
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor


Read the full article 
Reference for citation: Ходунков В. П., Заричняк Ю. П. Моделирование и расчет двумерно-ориенти-рованной теплопроводности гетерогенных композиций // Изв. вузов. Приборостроение. 2023. Т. 66, № 9. С. 771—780. DOI: 10.17586/0021-3454-2023-66-9-771-780.

Abstract. A method for modeling a two-component composite material is considered to describe the anisotropy of thermal conductivity of its two-dimensionally oriented structure. The method consists of modeling the structure of the composite under study and subsequent calculation of its thermal conductivity using design relationships that are based on the well-known electrothermal analogy. In the method under consideration, the structure of a real composite is modeled by an elementary cell, which is a cube with edges of unit length. The final system of equations for calculating two-dimensionally oriented thermal conductivity is presented, an example is given, and an estimate of the expected accuracy of thermal conductivity prediction is given.
Keywords: modeling, structure, thermal conductivity, anisotropy, electrothermal analogy, two-component composite

Acknowledgement: Khodunkov V. P., Zarichnyak Yu. P. Modeling and calculation of two-dimensionally oriented thermal conductivity of heterogeneous compositions. Journal of Instrument Engineering. 2023. Vol. 66, N 9. P. 771—780 (in Russian). DOI: 10.17586/0021-3454-2023-66-9-771-780.

References:
  1. Maxwell J.C. A treatise on electricity and magnetism, Vol. 1, Oxford University Press, 1873, 500 p.
  2. Wiener O. Die Theorie des Mischkörpers für das Feld der stationären Strömung, Abh. d.Leipz. Akad., 1912, Bd. 32, 509 р.
  3. Odelevsky V.I. Technical Physics, 1951, no. 6(21), pp. 667–685. (in Russ.)
  4. Meredith R.E., Tobias C.W. J. Electrochem. Soc., 1961, vol. 108, рр. 286–290, https://doi.org/10.1149/1.2428064.
  5. Missenard A. Conductivite' thermique des solides, liquides, gaz et de leurs mélanges, Eyrolles, 1965, 554 р.
  6. Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost' smesey i kompozitsionnykh materialov (Thermal Conductivity of Mixtures and Composite Materials), Leningrad, 1974, 264 р. (in Russ.)
  7. Ponomarev S.V., Mishchenko S.V., Divin A.G. Teoreticheskiye i prakticheskiye aspekty teplofizicheskikh izmereniy (Theoretical and Practical Aspects of Thermophysical Measurements), Tambov, 2006, Book 1, 204 р. (in Russ.)
  8. Orlov A.I. Obobshchennaya provodimost' geterogennykh sred i sterzhnevykh sistem (Generalized Conductivity of Heterogeneous Media and Rod Systems), Extended abstract of candidate’s thesis, Obninsk, 2009, 24 р. (in Russ.)
  9. Mikhailin Yu.A. Konstruktsionnyye polimernyye materialy (Structural Polymeric Materials), St. Petersburg, 2013, 822 р. (in Russ.)
  10. Zarubin V.S., Zarubin S.V., Kuvyrkin G.N. Science and Education of Bauman MSTU, 2014, no. 1, pp. 270–281, DOI: 10.7463/0114.0657262. http:technomag.bmstu.ru/doc/657262.html (in Russ.)
  11. Edvabnik V.G. Modern problems of science and education, 2015, no. 1, 51 р. (in Russ.)
  12. Pietrak K., Tomasz S. Journal of Power Technologies, 2015, no. 1(95), pp. 14–24.
  13. Balabanov P.V., Savenkov A.P. Teoreticheskiye i prakticheskiye aspekty izmereniya teplofizicheskikh svoystv geterogennykh materialov (Theoretical and Practical Aspects of Measuring the Thermophysical Properties of Heterogeneous Materials), Tambov, 2016, 188 р. (in Russ.)
  14. Kolesnikov S.A., Kim L.V., Vorontsov V.A., Protsenko A.K., Cheblakova E.G. Novyye ogneupory (New Refractories), 2017, no. 8, pp. 45–56. (in Russ.)
  15. Sulaberidze V.Sh., Mikheev V.A. Modelirovaniye teploprovodnosti geterogennykh kompozitsiy funktsional'nykh materialov na osnove eksperimental'nykh dannykh (Modeling of Thermal Conductivity of Heterogeneous Compositions of Functional Materials Based on Experimental Data), St. Petersburg, 2023, 118 р., ISBN 978-5-001125-752-3. (in Russ.)
  16. Khodunkov V.P., Pokhodun A.I., Zarichnyak Yu.P. Instruments, 2015, no. 8, pp. 7–12. (in Russ.)
  17. Patent RU 2739728, G01N 25/18, С22С 9/06, G01N 33/20, Sposob sozdaniya metallokompozita s predskazuyemoy teploprovodnost'yu (Method for Creating a Metal Composite with Predictable Thermal Conductivity), V.P. Khodunkov, Yu.P. Zarichnyak, Patent application no. 2020123353, Priority 08.07.2020, Published 28.12.2020, Bulletin 1. (in Russ.)
  18. Patent RU 2748669, С09K 5/14, G01N 25/18, Sposob sozdaniya dvukhkomponentnogo kompozita s zadannoy teploprovodnost'yu (Method for Creating a Two-component Composite with a Given Thermal Conductivity), V.P. Khodunkov, Yu.P. Zarichnyak, Patent application no. 2020123354, Priority 08.07.2020, Published 28.05.2021, Bulletin 16. (in Russ.)
  19. Khodunkov V.P., Zarichnyak Yu.P. Bulletin of the Tambov State Technical University, 2022, no. 3(28), pp. 455–465, DOI: 10.17277/vestnik.2022.03. (in Russ.)
  20. Khodunkov V.P., Zarichnyak Yu.P. Journal of Instrument Engineering, 2022, no. 9(65), pp. 668–676, DOI: 10/17586/0021-3454-2022-65-9-668-676. (in Russ.)
  21. Khodunkov V.P., Zarichnyak Yu.P. Teplovyye protsessy v tekhnike, 2022, no. 12(14), pp.482–496, DOI: 10.34759/tpt-2022-14-12-482-496. (in Russ.)