ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-10-852-868

UDC 620. 179.17

METHODS FOR FILTERING ACOUSTIC EMISSION SIGNALS WHEN MONITORING DEFECT FORMATION IN THE PROCESS OF DIRECT LASER GROWTH OF PRODUCTS

Y. Altay
ITMO University, Saint Petersburg, 197101, Russian Federation; PhD Student, Engineer


D. O. Kuzivanov
ITMO University, Saint Petersburg, 197101, Russian Federation; Engineer


D. A. Rozhdestvensky
St. Petersburg State Maritime Technical University, Institute of Laser and Welding Technologies, Department of Additive Technologies; Specialist of the Department


M. I. Sannikov
St. Petersburg State Maritime Technical University, Institute of Laser and Welding Technologies, Department of Additive Technologies ; Engineer of the Department


K. A. Stepanova
ITMO University, Saint Petersburg, 197101, Russian Federation; Assistant


Read the full article 
Reference for citation: Altay Ye., Kuzivanov D. О., Rozhdestvensky D. А., Sannikov М. I., Stepanova К. А. Methods for filtering acoustic emission signals when monitoring defect formation in the process of direct laser growth of products. Journal of Instrument Engineering. 2023. Vol. 66, N 10. P. 852—868 (in Russian). DOI: 10.17586/0021-3454-2023-66-10-852-868.

Abstract. Results of acoustic emission monitoring of defect formation in products during direct laser growth are presented. The features of applying the acoustic emission method and results of processing recorded acoustic emission signals with the use of cascade polynomial digital filtering are considered. Results of experimental testing of the cascade filtration method for detecting internal structure defects such as cracks and pores are presented. Fragments of amplitude-time and frequency-time diagrams of acoustic emission signals recorded during the development of defects in the process of growing products are isolated. An assessment is made of the dependence of acoustic emission signals on defect formation parameters. A relationship between the acoustic emission signals parameters and applied laser radiation power is established, which characterizes the process of defect formation, as well as the nitrogen content in the heat-resistant alloy powder.
Keywords: acoustic emission, defect formation testing, additive manufacturing, direct laser growth, filtering, laser power, metallography, chromium-nickel alloy, signal

Acknowledgement: The research was carried out with the financial support of the Russian Ministry of Education and Science as part of the implementation of the program of the world-class Scientific Center in the direction of “Advanced Digital Technologies” of St. Petersburg State Marine Technical University (agreement dated April 20, 2022, No. 075-15-2022-312).

References:
  1. Ivanov A.D., Minaev V.L., Vishnyakov G.N. Industrial laboratory. Diagnostics of materials, 2019, vol. 85, рp. 76–82.
  2. Kovalevich A.S., Kinzhagulov I.Yu., Stepanova K.A., Kuzivanov D.O. Journal of Instrument Engineering, 2023, no. 2(66), pp. 139–147, DOI: 10.17586/0021-3454-2023-66-2-139-147. (in Russ.)
  3. Kaplan M.A., Kirsankin A.A., Smirnov M.A., Kalaida T.A., Sevostyanov M.A. Novyye materialy i perspektivnyye tekhnologii (New Materials and Advanced Technologies), Collection of materials of the 4th Interdisciplinary Scientific Forum with International Participation, 2018, рр. 130–131. (in Russ.)
  4. Litunov S.N., Slobodenyuk V.S., Melnikov D.V. Omsk Scientific Bulletin, 2016, no. 1(145), pp. 12–17. (in Russ.)
  5. Wei Q., Xie Y., Teng Q., Shen M., Sun S., Cai C. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, vol. 1, рр. 100055.
  6. Yang G., Xie Y., Zhao S., Qin L., Wang X., Wu B. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, рр. 100037.
  7. Popkova I.S. Sbornik XVI mezhdunarodnoy nauchno-tekhnicheskoy Ural'skoy shkoly metallovedov-molodykh uchenykh (Collection of the XVI International Scientific and Technical Ural School of Metallurgists and Young Scientists), Part. 2, Ekaterinburg, 2015, рр. 276–279. (in Russ.)
  8. Zhang B., Li Y., Bai Q. Chinese Journal of Mechanical Engineering, 2017, vol. 30, рр. 515–527.
  9. Grange D., Bartout J.D., Macquaire B., Colin C. Materialia, 2020, vol. 12, рр. 100686.
  10. Shahwaz M., Nath P., Sen I. Journal of Alloys and Compounds, 2022, рр. 164530.
  11. Smirnov M.A., Kaplan M.A., Kirsankin A.A., Kalaida T.A., Sevostyanov M.A. Novyye materialy i perspektivnyye tekhnologii (New Materials and Advanced Technologies), Collection of materials of the 4th Interdisciplinary Scientific Forum with International Participation, 2018, рр. 307–310. (in Russ.)
  12. Kaplan M.A., Kirsankin A.A., Smirnov M.A., Sevostyanov M.A. Novyye materialy i perspektivnyye tekhnologii (New Materials and Advanced Technologies), Collection of materials of the 4th Interdisciplinary Scientific Forum with International Participation, 2018, рр. 131–132. (in Russ.)
  13. Barile C., Casavola C., Pappalettera G., Kannan V.P., Mpoyi D.K. Applied Sciences, 2023, vol. 13, р. 189.
  14. Wang C., Tan X.P., Tor S.B., Lim C.S. Additive Manufacturing, 2020, vol. 36, рр. 101538.
  15. Barat V.A. Razvitiye metoda akusticheskoy emissii za schet avtomatizatsii obrabotki dannykh, povysheniya pomekhoustoychivosti i dostovernosti obnaruzheniya treshchinopodobnykh defektov metallokonstruktsiy (Development of the Acoustic Emission Method by Automating Data Processing, Increasing Noise Immunity and Reliability of Detection of Crack-Like Defects in Metal Structures), Extended abstract of Doctor’s thesis, Moscow, 2019, 40 р. (in Russ.)
  16. Altay Y.A., Fedorov A.V., Stepanova K.A. Proc. of the 2022 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, 2022, рр. 1320–1326.
  17. Altay Y., Fedorov A.V., Stepanova K.A., Kuzivanov D.O. Journal of Instrument Engineering, 2022, no. 10(65), pp. 735–746, DOI: 10.17586/0021-3454-2022-65-10-735-746. (in Russ.)
  18. Altay Y., Fedorov A.V., Stepanova K.A. Control. Diagnostics, 2022, no. 6(25), pp. 36–45. (in Russ.)
  19. Chernova V.V. Razrabotka metodiki akustiko-emissionnogo kontrolya defektov na ranney stadii ikh razvitiya v izdeliyakh iz kompozitsionnykh materialov (Development of a Technique for Acoustic Emission Monitoring of Defects at an Early Stage of Their Development in Products Made of Composite Materials), Extended abstract of candidate’s thesis, Tomsk, 2017, 21 р. (in Russ.)
  20. Rastegaeva I.I., Rastegaev I.A., Agletdinov E.A. The comparison of the main time-frequency transformations of spectral analysis of acoustic emission signals. Frontier Materials and Technologies, 2022, no. 1, pp. 49–60.
  21. Altay Y.A., Kremlev A.S. Proc. of the 2018 IEEE conference of Russian young researchers in electrical and electronic engineering, IEEE, 2018, рр. 1058–1062.
  22. Altay Y.A., Kuzivanov D.O. Proc. of the 2023 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg, 2023, рр. 1320–1326.
  23. Zakharov L.А., Martyushev D.А., Ponomareva I.N. Journal of Mining Institute, 2022, vol. 253, рр. 23–32.
  24. Elforjani M., Shanbr S. IEEE Transactions on industrial electronics, 2018, no. 7(65), pp. 5864–5871.
  25. Smirnov M.A., Kaplan M.A., Sevostyanov M.A. IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, vol. 347, рр. 012033.
  26. Smirnov M.A., Kaplan M.A., Kirsankin A.A., Kalaida T.A., Nasakina E.O., Sevostyanov M.A. IOP Conference Series: Materials Science and Engineering, 2019, vol. 525, рр. 012076.
  27. Tempelman J. R., Wachtor A.J., Flynn E.B., Depond P.J., Forien J.B., Guss, G.M., Matthews M. J. Additive Manufacturing, 2022, vol. 55, рр. 102735.
  28. http://www.ilwt-stu.ru/upload/publications/DMD_ru.pdf. (in Russ.)
  29. Barile C., Casavola C., Pappalettera G., Vimalathithan P. Mechanics of materials, 2020, vol. 148, рр. 103448.
  30. Pandiyan V., Drissi-Daoudi R., Shevchik S., Masinelli G., Loge R., Wasmer K. Procedia CIRP, 2020, vol. 94, рр. 392–397.
  31. Pandiyan V., Drissi-Daoudi R., Shevchik S., Masinelli G., Le-Quang T., Loge R., Wasmer K. Virtual and Physical Prototyping, 2021, vol. 16, рр. 481–497.
  32. Altay Y.A., Kremlev A.S. Bulletin of the Russian New University Complex Systems: models, analysis and management, 2020, no. 2, pp. 18–28. (in Russ.)
  33. Rastegaev I.A., Merson D.L., Rastegaeva I.I. Аktual'nyye problemy metoda akusticheskoy emissii (Actual Problems of the Acoustic Emission Method), Collection of materials of the All-Russian Conference, Tolyatti, 2018, рр. 103–104. (in Russ.)
  34. Makhutov N.A., Sokolova A.G., Vasil’ev I.E., Chernov D.V., Skvortsov D.F., Bubnov M.A., Ivanov V.I. Russian Journal of Nondestructive Testing, 2020, no. 12(56), pp. 960–970.
  35. Frolov A.V., Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Proceedings of VIAM, 2015, no. 9, pp. 57–63. (in Russ.)
  36. Zhang W., Jia H., Gao G., Cheng X., Du P., Xu D. Applied Acoustics, 2019, vol. 156, рр. 387–393.