ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2023-66-11-960-967

UDC 621.391.63:681.7.068

EFFECTIVE PHOTOSENSITIVE SURFACE OF SILICON PHOTOMULTIPLIERS

I. R. Gulakov
Belarusian State Academy of Communications, Department of Mathematics and Physics;


A. O. Zenevich
Belarusian State Academy of Communications, Industry Laboratory of Information and Communication Technologies; Rector;


O. V. Kochergina
Belarusian State Academy of Communications, Department of Mathematics and Physics;


Read the full article 
Reference for citation: Gulakov I. R., Zenevich A. O., Kochergina O. V. Effective photosensitive surface of silicon photomultipliers. Journal of Instrument Engineering. 2023. Vol. 66, N 11. P. 960—967 (in Russian). DOI: 10.17586/0021-3454-2023-66-11-960-967.

Abstract. Research has been carried out to determine the effective area of the photosensitive surface of silicon photomultipliers (SiPM) at the operating supply voltage, as well as to establish the dependence of this characteristic on the applied supply voltage. Silicon photomultipliers KOF5-1035 (Belarus), Ketek RM 3325 and ON Semi FC 30035 (Germany) are selected for the study. Application of developed experimental setup makes it possible to reveal that an increase in the supply voltage leads to an increase in the area of the effective photosensitive surface of the SiPM. It is found that the maximum value of sensitivity at a given operating voltage is observed in the central part of the photosensitive surface and decreases symmetrically as the spot of the optical probe approaches the surface edge. The results obtained can be used to create devices for detecting optical radiation in the visible range based on silicon photomultipliers.
Keywords: silicon photomultiplier, photocurrent, sensitivity, sensitivity heterogeneity, overvoltage, effective photosensitive surface

References:
  1. Klemin S. et al. Electronics: Science, Technology, Business, 2007, no. 8, pp. 80–86. (in Russ.)
  2. Staglianoa M., Abegão L., Chiericia A., and d’Erricoa F. EPH - Intern. J. of Science and Engineering, 2018, no. 10(4), pp. 21.
  3. Modi M.N., Daie K., Turner G.C., Podgorski K. Optics express, 2019, no. 24(27), pp. 35830.
  4. Soboleva N.A., Melamid A.E. Fotoelektronnyye pribory (Photoelectronic Devices), Moscow, 1974, 376 р. (in Russ.)
  5. Gulakov I.R., Kholondyrev S.V. Metod scheta fotonov v optiko-fizicheskikh izmereniyakh (Photon Counting Method in Optical-Physical Measurements), Minsk, 1989, 256 р. (in Russ.)
  6. Lebedev A.I. Fizika poluprovodnikovykh priborov (Physics of Semiconductor Devices), Moscow, 2008, 488 р. (in Russ.)
  7. Voytsekhovskiy A.V., Izhnin I.I., Savchin V.P., Vakiv N.M. Fizicheskiye osnovy poluprovodnikovoy fotoelektroniki (Physical Foundations of Semiconductor Photoelectronics), Tomsk, 2013, 560 р. (in Russ.)
  8. O`Neill K., Pavlov N., Jackson C. Photonics Russia, 2013, no. 1(37), pp. 76–83. (in Russ.)
  9. Dudnik A.V., Kurbatov E.V., Valtonen E. Journal of Kharkiv University: Рhysical series «Nuclei, Particles, Fields», 2012, no. 1(991), pp. 69–74.
  10. Ramadhani E. Intern. J. of Computer and Information System (IJCIS) Peer Reviewed, 2022, no. 03(03), pp. 90–93.
  11. Gulakov I.R., Zenevich A.O., Novikov E.V., Kochergina O.V., Lagutik A.A. Advances in Applied Physics, 2021, no. 3(9), pp. 216–223. (in Russ.)
  12. Gulakov I.R., Zenevich A.O., Novikov E.V., Kochergina O.V., Lagutik A.A. Advances in Applied Physics, 2021, no. 2(9), pp. 164–171. (in Russ.)
  13. Zenevich A.O., Kochergina O.V. Semiconductors, 2021, no. 1(26), pp. 30–39. (in Russ.)
  14. Gulakov I.R., Zenevich A.O. Fotopriyemniki kvantovykh sistem (Photodetectors of Quantum Systems), Minsk, 2012, 276 р. (in Russ.)
  15. Asayonak M.A., Zenevich A.O., Kacharhina V.V., Novikau Ya.V., Saroka S.A. Proceedings of the National Academy of Sciences of Belarus. Physico-Technical Series, 2020, no. 3(65), pp. 349–356. (in Russ.)