ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2024-67-1-20-32

UDC 004.94, 621.396.96

INTELLIGENT ALGORITHM FOR TRACKING HIGHLY DYNAMIC AEROBALLISTIC OBJECTS BASED ON MOTION TRAJECTORY ESTIMATES

N. A. Khodataev
Academician A. L. Mints Radiotechnical Institute, Scientific and Technical Center for Software and Algorithmic Support; Director of the Center


A. V. Timoshenko
Joint Stock Company “Academician A.L.Mints Radiotechnical Institute”, Moscow, 127083, Russian Federation; Head of Department, Deputy General Designe


A. M. Kazantsev
Academician A. L. Mints Radiotechnical Institute, Advanced Development Sector; Leading Engineer


A. E. Skosarenko
Academician A. L. Mints Radiotechnical Institute, Software Product Managers Department; Software Development Manager

Reference for citation: Khodataev N. А., Timoshenko А. V., Kazantsev А. М., Skosarenko А. Е. Intelligent algorithm for tracking highly dynamic aeroballistic objects based on motion trajectory estimates. Journal of Instrument Engineering. 2024. Vol. 67, N 1. P. 20—32 (in Russian). DOI: 10.17586/0021-3454-2024-67-1-20-32.

Abstract. The problem of ensuring timely and effective detection and tracking of highly dynamic aeroballistic objects (HDAO) is considered. To improve the accuracy of object tracking by ground-based sensors, a new method is proposed for aggregating predictive estimates of the HDAO trajectory and measurement noise using an ensemble Kalman filter, which implements an approximation using cubic spline interpolation in conjunction with forecasting time sequences. This approach makes it possible to more accurately predict the trajectory of HDAO in nonlinear sections of motion and significantly improves target tracking by ground-based sensors. To confirm the effectiveness of the proposed approach, a mathematical model of the observation system is developed, and the effectiveness of using an ensemble Kalman filter for tracking HDAO is assessed in comparison with a conventional Kalman filter.
Keywords: ground sensor, tracking, highly dynamic aeroballistic object, analytical model, motion trajectory, ensemble Kalman filter

References:
  1. Sarychev M., Bashirov N., Novikova D. Zarubezhnoye voyennoye obozreniye, 2021, no. 9, pp. 28–34. (in Russ.)
  2. Timoshenko A.V., Klimenko V.M., Baldychev M.T., Romakhin V.A., Omel'shin A.A. Vestnik vozdushno-kosmicheskoy oborony, 2022, no. 2(34), pp. 118–131. (in Russ.)
  3. Ermakov A. New Defense order. Strategy, 2020, no. 5, pp. 70–77.
  4. Mizokami K. Say Hello to "Dark Eagle" the Army’s New Hypersonic Weapon, https://www.popularmechanics.com/military/weapons/a37284902/army-hypersonic-missile-dark-eagle.
  5. Sayler K.M. Hypersonic Weapons: Background and Issues for Congress, https://crsreports.congress.gov/product/pdf/R/R45811.
  6. Markova M.V., Sergunov K.Yu. Vestnik Kontserna VKO "Almaz–Antey", 2017, no. 2, pp. 10–15. (in Russ.)
  7. Zhang J., Xiong J., Li L., Xi Q., Chen X., Li F. IEEE Access, 2022, vol. 10, рр. 21095–21108.
  8. Kalman R.Е. J. of Basic Engineering, 1960, vol. 82, рр. 35–45.
  9. Kalman R.E., Bucy R.S. J. of Basic Engineering, 1961, vol. 83, рр. 95–108.
  10. Kaplin A.Yu., Stepanov M.G., Yarmolich A.G. Journal of Instrument Engineering, 2017, no. 4(60), pp. 311–317. (in Russ.)
  11. https://habr.com/ru/articles/140274/. (in Russ.)
  12. Fissenko V.T., Vilesov L.D., Mozheiko V.I., Fissenko T.Yu. Journal of Instrument Engineering, 2009, no. 8(52), pp. 12–19. (in Russ.)
  13. Evensen G. Ocean Dynamics, 2003, vol. 53, рр. 343–367.
  14. Katzfuss M., Stroudb J.R., Wiklec C.K. The American Statistician, 2016, no. 4(70), pp. 350–357.
  15. Mandel J., Cobb L., Beezley J.D. Appl. Math. (Prague), 2011, no. 6(56), pp. 533–541.
  16. Klimova E.G. Numerical Analysis and Applications, 2019, no. 1(22), pp. 26–36. (in Russ.)