ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2024-67-1-61-69

UDC 629.7.058.43

ESTIMATION OF A DYNAMIC OBJECT LOCATION IN DENSE AND HIGH-RISE URBAN DEVELOPMENT USING AUXILIARY INFORMATION

A. M. Vyatkin
A. F. Mozhaisky Military Space Academy, Departament of Transmitting, Antenna-Feeder Devices and Unified Time System Facilities;


T. O. Myslivtsev
A. F. Mozhaysky Military Space Academy, Department of Antenna Feeder and Transmitting Devices, St. Petersburg;


S. V. Nikiforov
A. F. Mozhaysky Military Space Academy, Department of Transmission, Antenna-Feeder Devices and Means for SEV; Adjunct


A. N. Sakulin
A. F. Mozhaisky Military Space Academy, Departament of Transmitting, Antenna-Feeder Devices and Unified Time System Facilities ;

Reference for citation: Vyatkin A. A., Myslivtsev T. O., Nikiforov S. V., Sakulin A. N. Estimation of a dynamic object location in dense and high-rise urban development using auxiliary information. Journal of Instrument Engineering. 2024. Vol. 67, N 1. P. 61—69 (in Russian). DOI: 10.17586/0021-3454-2024-67-1-61-69.

Abstract. To improve navigation support for a user in conditions of limited “visibility” of a satellite radio navigation system constellation, an algorithm for estimating a dynamic object location is proposed based on a numerical optimization method, both with and without the use of heterogeneous auxiliary information. The algorithm can serve as a backup to increase the user's navigation support stability and allows to estimate an object location with meter and even decimeter accuracy, and the object time scale displacement relative to the system scale - with an accuracy of tens of nanoseconds.
Keywords: auxiliary information, navigation spacecraft, navigation system user, location accuracy, highly dynamic object

References:
  1. http://otvaga2004.ru/armiya-i-vpkyarmiya-i-vpk-vzglyad/malorazmernye-bespilotniki/. (in Russ.)
  2. Makarenko S.I. Protivodeystviye bespilotnym letatel'nym apparatam (Countering Unmanned Aerial Vehicles), St. Petersburg, 2020, 204 р. (in Russ.)
  3. Aleshin B.S., Sukhanov V.L., Shibayev V.M., Shnyrev A.G. Mezhotraslevoy al'manakh, 2014, no. 46, hUp://slaviza.ru/print:page,1,1494-tipy-bespilotnyh-letatelnyh.html. (in Russ.)
  4. Semenova L.L. Nauka i obrazovaniye segodnya, 2018, no. 4(27), pp. 6–8. (in Russ.)
  5. Perov A.I., Kharisov V.N., ed., GLONASS. Printsipy postroyeniya i funktsionirovaniya (GLONASS. Principles of Construction and Operation), Moscow, 2010, 800 р. (in Russ.)
  6. Gen K., Chulin N.A. Mashinostroyeniye i komp'yuternyye tekhnologii, 2016, no. 12, pp. 182–206. (in Russ.)
  7. Navigatsionnaya apparatura potrebiteley global'nykh navigatsionnykh sputnikovykh sistem GLONASS i GPS dlya individual'nogo pol'zovaniya "Orion" (indeks 14TS8009). Tekhnicheskiye usloviya. TDTSK.461513.104TU (Navigation Equipment for Consumers of the Global Navigation Satellite Systems GLONASS and GPS for Individual Use “Orion” (index 14TS8009). Technical Conditions. TDTSK.461513.104TU). (in Russ.)
  8. Attetov A.V., Galkin V.S., Zarubin S.V. Metody optimizatsii (Optimization Methods), Moscow, 2001, 439 р. (in Russ.)
  9. Myslivtsev T.O., Nikiforov S.V. Voprosy oboronnoy tekhniki. Seriya 16: Tekhnicheskiye sredstva protivodeystviya terrorizmu, 2021, no. 1-2(151-152), pp. 26–32. (in Russ.)
  10. Byulleten' V17/2020. Etalonnyye signaly chastoty i vremeni. Kharakteristiki i programmy peredach cherez radiostantsii, nazemnyye i kosmicheskiye sredstva navigatsii, seti televizionnogo veshchaniya i global'nuyu set' internet (Bulletin B17/2020. Frequency and Time Reference Signals. Characteristics and Programs of Transmissions Through Radio Stations, Ground and Space Navigation Aids, Television Broadcasting Networks and the Global Internet), Moscow, 2020, 32 р. (in Russ.)