ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2024-67-2-122-132

UDC 519.4

METHOD FOR CREATING AN INTEGRAL ASSESSMENT OF THE QUALITY OF DIFFICULT-TO-FORMALIZE OBJECT

V. A. Zelentsov
St. Petersburg Institute for Informatics and Automation RAS, Laboratory of Information Technologies in System Analysis and Modeling Leading Researcher; Professor

Reference for citation: Zelentsov V. А. Method for creating an integral assessment of the quality of difficult-to-formalize object. Journal of Instrument Engineering. 2024. Vol. 67, N 2. P. 122—132 (in Russian). DOI: 10.17586/0021-3454-2024-67-2-122-132.

Abstract. A method for creating an integral assessment of the quality of difficult-to-formalize object is developed using the example of analysis of forest ecosystem sustainability. The proposed method is based on the procedures of multicriteria analysis and qualimetry of models and multi-model complexes. A two-level classification of sustainability indicators is used, including a set of specific and general indicators. An integral assessment of sustainability is created on the basis of the values of generalized indicators. The most general case is analyzed when the indicators under consideration have a complex structure, are measured in various scales (quantitative and qualitative) and can be related non-linearly to each other. The method description is carried out using the example of deriving an integral assessment of sustainability on the basis of three generalized indicators characterizing the productive capacity, sanitary condition, and biodiversity of forests. Each of the generalized indicators represents a linguistic variable. The essence of the method is the application of production models of preference of the decision maker and processing of expert survey data by the methods of the theory of fuzzy measures. Using the method allows to describe and take into account the nonlinear influence of a set of generalized indicators on the resulting assessment of stability and thereby obtain the most reliable results. Based on the proposed method, it is possible to obtain estimates of the forest integral sustainability, to conduct a comparative analysis of forest vegetation sites with different values of generalized indicators, as well as for the same site at different points in time.
Keywords: difficult-to-formalize object, multicriteria analysis, integral assessment, sustainability, forest ecosystem, linguistic scales, production models, expert survey

Acknowledgement: Research in the section “Solution method” was carried out within the framework of the budget topic FFZF-2022-0004; Research in the section “Multi-criteria analysis of the sustainability of a forest ecosystem” was carried out with a grant from the Russian Science Foundation (project No. 22-19-00767, https://rscf.ru/project/22-19-00767).

References:
  1. Glazovsky N.F., Armand A.D. Mekhanizmy ustoychivosti geosistem (Mechanisms of Stability of Geosystems), Moscow, 1992, 202 р. (in Russ.)
  2. Kupriyanova T.P. Faktory i mekhanizmy ustoychivosti geosistem (Factors and Mechanisms of Stability of Geosystems), Moscow, 1989, 333 р. (in Russ.)
  3. Lara M., Doyen L. Sustainable Management of Natural Resources. Mathematical models and methods, Berlin, Heidelberg, Springer Verlag, 2008, 266 p.
  4. Odum E.P. Basic Ecology, CBS College Publishing, 1983.
  5. Alekseev A.S. et al. Ustoychivoye upravleniye lesnym khozyaystvom: nauchnyye osnovy i kontseptsii (Sustainable Forest Management: Scientific Foundations and Concepts), St. Petersburg, 1998, 222 р. (in Russ.)
  6. Kerzhentsev A.S. Funktsional'naya ekologiya (Functional Ecology), Moscow, 2006, 259 р. (in Russ.)
  7. Kolomyts E.G., Sharaya L.S. Nazemnyye ekosistemy (Terrestrial Ecosystems), 2014, рр. 93–107. (in Russ.)
  8. Poluektov R.A., Pykh Yu.A., Shvytov I.A. Dinamicheskiye modeli ekologicheskikh sistem (Dynamic Models of Ecological Systems), Leningrad, 1980, 288 р. (in Russ.)
  9. Semevsky F.N., Semenov S.M. Matematicheskoye modelirovaniye ekologicheskikh protsessov (Mathematical Modeling of Environmental Processes), Leningrad, 1982, 280 р. (in Russ.)
  10. Khomyakov P.M., Ivanov V.D., Iskandaryan R.A. et al. Geoekologicheskoye modelirovaniye dlya tseley upravleniya prirodopol'zovaniyem v usloviyakh izmeneniy prirodnoy sredy i klimata (Geoecological Modeling for Environmental Management Purposes under Conditions of Environmental and Climate Change), Moscow, 2002, 400 р. (in Russ.)
  11. Frelich L.E. Forest Dynamics and Disturbance Regimes, Cambridge, Cambridge University Press, 2002, 266 p.
  12. Storozhenko V.G. Lesokhozyaystvennaya informatsiya, 2019, no. 4, pp. 87–97. (in Russ.)
  13. Svirezhev Yu.M., Logofet D.O. Ustoychivost' biologicheskikh soobshchestv (Stability of Biological Communities), Moscow, 1978, 293 р. (in Russ.)
  14. Kolomyts E.G., Kerzhentsev A.S., Sharaya L.S. Uspekhi Sovremennoi Biologii, 2015, no. 1(135), pp. 127–149. (in Russ.)
  15. Kuznetsov V.I., Kozlov N.I., Khomyakov P.M. Matematicheskoye modelirovaniye evolyutsii lesa dlya tseley upravleniya lesnym khozyaystvom (Mathematical Modeling of Forest Evolution for Forest Management Purposes), Moscow, 2005, 232 р. (in Russ.)
  16. Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests, The Montréal Process, October 2009, https://montreal-process.org/documents/publications/general/2009/2009p_4.pdf.
  17. Prikaz Rosleskhoz ot 05.02.98 N 21 "Ob utverzhdenii kriteriyev i indikatorov ustoychivogo upravleniya lesami Rossiyskoy Federatsii" (Order of Rosleskhoz dated 02/05/98 N 21 “On approval of criteria and indicators for sustainable forest management of the Russian Federation”). (in Russ.)
  18. Mikoni S.V., Sokolov B.V. Yusupov R.M. Kvalimetriya modeley i polimodel'nykh kompleksov (Qualimetry of Models and Polymodel Complexes), Moscow, 2018, 314 р. (in Russ.)
  19. Sokolov B., Zelentsov V.A., Nemykin S. Automation Control Theory Perspectives in Intelligent Systems, 2016, vol. 466, рр. 391–401.
  20. Keeney R.L., Raiffa H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs, NY, Wiley, 1976.
  21. Nogin V.D. Prinyatiye resheniy v mnogokriterial'noy srede: kolichestvennyy podkhod (Decision Making in a Multicriteria Environment: a Quantitative Approach), Moscow, 2005, 176 р. (in Russ.)
  22. Podinovski V.V. European Journal of Operational Research, 2014, no. 2(239), pp. 537–541.
  23. Pospelov D.A., ed., Nechetkiye mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta (Fuzzy Sets in Models of Control and Artificial Intelligence), Moscow, 1986, 312 р. (in Russ.)
  24. Pavlov A.N., Sokolov B.V. Prinyatiye resheniy v usloviyakh nechetkoy informatsii (Decision Making under Conditions of Unclear Information), St. Petersburg, 2006, 72 р. (in Russ.)
  25. Roy B. Problems and methods with multiple objective functions in Mathematical Programming, 1971, no. 1(2), pp. 239–266.
  26. Steuer R.E. Multiple Criteria Optimization: Theory, Computation, and Application, 1986, 546 р.
  27. Larichev O.I. Verbal'nyy analiz resheniy (Verbal Analysis of Decisions), Moscow, 2006, 181 р. (in Russ.)
  28. Mikhalevich V.S., Volkovich V.L. Vychislitel'nyye metody issledovaniya i proyektirovaniya slozhnykh system (Computational Methods for Studying and Designing Complex Systems), Moscow, 1982, 286 р. (in Russ.)
  29. Pavlov A., Sokolov B., Pashchenko A., Shalyto A., Maklakov G. Proceedings of the 2016 IEEE 8th International Conference on Intelligent Systems, 2016, рр. 402–408.
  30. Pavlov A.N., Pavlov D.A., Pavlov A.A., Slin’ko A.A. Proceedings of the 6th Computer Science On-line Conference 2017 (CSOC2017). Vol. 2: Cybernetics and Mathematics Applications in Intelligent Systems, 2017, рр. 131–140.
  31. Zelentsov V.A., Pavlov A.N. Information and Control Systems, 2010, no. 6, pp. 7–12. (in Russ.)
  32. Pytyev Yu.P. Vozmozhnost' kak al'ternativa veroyatnosti. Matematicheskiye i empiricheskiye osnovy, primeneniye (Possibility as an Alternative to Probability. Mathematical and Empirical Foundations, Application), Moscow, 2007, 464 р. (in Russ.)
  33. Makarichev Yu.A., Ivannikov Yu.N. Metody planirovaniya eksperimenta i obrabotki dannykh (Methods of Experiment Planning and Data Processing), Samara, 2016. 131 р. (in Russ.)
  34. Spesivtsev A.V. Upravleniye riskami chrezvychaynykh situatsiy na osnove formalizatsii ekspertnoy informatsii (Emergency Risk Management Based on Formalization of Expert Information), St. Petersburg, 2004, 238 р. (in Russ.)