ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2024-67-2-145-152

UDC 629.7.05.067: 629.7.054.44

CONSTRUCTION, MODELING OF SIGNAL FORMATION AND PROCESSING FOR AIR PARAMETERS MEASURING SYSTEM WITH THE INTEGRATED FUSELAGE FLOW RECEIVER

V. M. Soldatkin
A.N. Tupolev Kazan National Research Technical University-КAI, Department of Devices and Information-Measurement Systems; Professor


V. V. Soldatkin
A. N. Tupolev Kazan National Research Technical University, Department of Devices and InformationMeasuring Systems; Associate Professor


E. S. Efremova
A. N. Tupolev Kazan National Research Technical University, Department of Instruments and Information-Measuring Systems;


A. V. Nikitin
A. N. Tupolev Kazan National Research Technical University, Department of Devices and Information-Measuring Systems; Senior Lecturer

Reference for citation: Soldatkin V. M., Soldatkin V. V., Efremova E. S., Nikitin A. V. Construction, modeling of signal formation and processing for air parameters measuring system with the integrated fuse-lage flow receiver. Journal of Instrument Engineering. 2024. Vol. 67, N 2. P. 145—152 (in Russian). DOI: 10.17586/0021-3454-2024-67-2-145-152.

Abstract. It is noted that measuring the air parameters of airplanes and other aircrafts movement is necessary for solving control problems and ensure safety of traffic within the atmosphere. The features of widely used systems for measuring air parameters with receivers and sensors of incoming air flow parameters distributed throughout the fuselage are considered. Pneumatic lines and electrical cables that connect these receivers and sensors to an on-board computer generating system output signals, complicate the design and increase the system weight and cost. Receivers and sensors protruding beyond the fuselage skin disrupt the aerodynamics of the aircraft and increase its trajectory visibility. The systems being developed for measuring air parameters using vortex, ion-tag and ultrasonic methods for monitoring the oncoming flow and built on the basis of one (integrated) multifunctional flow receiver, also do not eliminate all of these shortcomings. The principles of constructing a system for measuring the air parameters of an aircraft's movement with an integrated fuselage flow receiver with built-in primary information converters and a system computer are formulated. Analytical models of primary informative signals, algorithms for their processing and generation of system output signals are developed. The competitive advantages and scope of application of the system under consideration are discussed.
Keywords: air parameters, measurement, system, construction, receiver, integrated, fuselage, models, signals, processing, advantages, application

References:
  1. Filatov G.A., Puminova G.S., Silvestrov P.V. Bezopasnost' poletov v vozmushchennoy atmosfere (Flight Safety in a Disturbed Atmosphere), Moscow, 1992, 272 р. (in Russ.)
  2. Makarov N.N. Sistemy obespecheniya bezopasnosti funktsionirovaniya bortovogo ergaticheskogo kompleksa: Teoriya, proyektirovaniye, primeneniye (Systems for Ensuring the Safety of the Functioning of the Onboard Ergatic Complex: Theory, Design, Application), Moscow, 2009, 760 р. (in Russ.)
  3. Kravtsov V.G., Alekseev N.V. Instruments and Systems: Monitoring, Control, and Diagnostics, 2000, no. 8, pp. 47–50. (in Russ.)
  4. Soldatkin V.M. Metody i sredstva izmereniya aerodinamicheskikh uglov letatel'nykh apparatov (Methods and Means for Measuring the Aerodynamic Angles of Aircraft), Kazan, 2001, 448 р. (in Russ.)
  5. Klyuev G.I., Makarov N.N., Soldatkin V.M., Efimov I.P. Izmeriteli aerodinamicheskikh parametrov letatel'nykh apparatov (Meters of Aerodynamic Parameters of Aircraft), Ulyanovsk, 2005, 509 р. (in Russ.)
  6. Soldatkin V.M., Ganeev F.A., Soldatkin V.V., Nikitin A.V. Aviatsionnyye pribory, izmeritel'no-vychislitel'nyye sistemy i kompleksy: Printsipy postroyeniya, algoritmy obrabotki informatsii, kharakteristiki i pogreshnosti (Aviation Instruments, Measuring and Computing Systems and Complexes: Design Principles, Information Processing Algorithms, Characteristics and Errors), Kazan, 2014, 526 р. (in Russ.)
  7. Efremova E.S., Soldatkin V.V. Journal of Instrument Engineering, 2020, no. 8(63), pp. 749–755. (in Russ.)
  8. Efremova E.S., Nikitin A.V., Soldatkin V.V, Soldatkin V.M. Journal of Instrument Engineering, 2021, no. 9(64), pp. 774–781. (in Russ.)
  9. Efremova E.S., Miftakhov B.I., Soldatkin V.V., Soldatkin V.M. Journal of Instrument Engineering, 2023, no. 6(66), pp. 457–463. (in Russ.)
  10. Patent SU 271140, G01P 5/12, Fyuzelyazhnyy priyemnik staticheskogo davleniya s aerodinamicheskim kompensatorom (Fuselage Static Pressure Receiver with an Aerodynamic Compensator), B.I. Abramov, V.A. Smoltsov, M.I. Petrova, Published 1970, Bulletin 17. (in Russ.)
  11. Patent SU 339815, G01P 5/12, Fyuzelyazhnyy priyemnik staticheskogo davleniya (Fuselage Static Pressure Receiver), B.I. Abramov, Published 1972, Bulletin 17. (in Russ.)
  12. Kharin E.G., Kopylov V.A. Tekhnologii letnykh ispytaniy bortovogo oborudovaniya letatel'nykh apparatov s primeneniyem kompleksa bortovykh trayektornykh izmereniy (Technologies for Flight Tests of Onboard Equipment of Aircraft Using a Complex of On-Board Path Measurements), Moscow, 2012, 360 р. (in Russ.)
  13. Zalmanzon L.A. Protochnyye elementy pnevmaticheskikh priborov kontrolya i upravleniya (Flow Elements of Pneumatic Monitoring and Control Devices), Moscow, 1961, 247 р. (in Russ.)
  14. Braslavsky D.A., Logunov S.S., Pelpor D.S. Aviatsionnyye pribory i avtomaty (Aviation Instruments and Machines), Moscow, 1970, 432 р. (in Russ.)