ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2024-67-3-241-250

UDC 681.5.015

PARAMETERS IDENTIFICATION FOR UNDERWATER VEHICLE DIVING DEPTH MODEL BASED ON THE REGRESSOR DYNAMIC EXPANSION AND MIXING PROCEDURE

A. I. Glushchenko
V. A. Trapeznikov Institute of Control Sciences of the RAS, Ya. Z. Tsypkin Laboratory #7 of Adaptive and Robust Systems ; Leading Researcher


K. A. Lastochkin
V. A. Trapeznikov Institute of Control Sciences of the RAS, Ya. Z. Tsypkin Laboratory №7 of Adaptive and Robust Systems; Junior Researcher

Reference for citation: Glushchenko A. I., Lastochkin K. A. Parameters identification for underwater vehicle diving depth model based on the regressor dynamic expansion and mixing procedure. Journal of Instrument Engineering. 2024. Vol. 67, N 3. P. 241—250 (in Russian). DOI: 10.17586/0021-3454-2024-67-3-241-250.

Abstract. A solution to the problem of estimating the parameters of a dynamic model of the diving depth of an uninhabited underwater vehicle is presented. To solve the problem, a new identification law is proposed, based on the procedure of dynamic expansion and mixing of the regressor and an algorithm for averaging estimates of unknown parameters. The resulting model with identified parameters approximates the dynamics of the immersion depth of a real apparatus with sufficient accuracy and is suitable for further calculation of robust standard controllers based on it.
Keywords: identification, dynamic regressor extension, estimate averaging, unmanned underwater vehicle, regressor excitation, control

Acknowledgement: the work was carried out with partial financial support from the Grant Council of the President of the Russian Federation (project MD-1787.2022.4).

References:
  1. O'Dwyer A. Handbook of PI and PID Controller Tuning Rules, World Scientific, 2009.
  2. Astrom K.J. PID Controllers: Theory, Design, and Tuning, The International Society of Measurement and Control, 1995.
  3. Ziegler J.G., Nichols N.B. Transactions of the American society of mechanical engineers, 1942, no. 8(64), pp. 759–765, DOI: 10.1115/1.4019264.
  4. Yakovis L.M. Avtomatizatsiya v promyshlennosti, 2007, no. 6, pp. 51–56, EDN: IBKZTV. (in Russ.)
  5. Rotach V.Ya. Raschet nastroyki promyshlennykh sistem regulirovaniya (Calculation of Settings for Industrial Control Systems), Moscow, Leningrad, 1961, 344 р. (in Russ.)
  6. Rabkin G.L., Mitrofanov V.A., Shterenberg Yu.O. Automation and Remote Control, 1955, no. 5(16), pp. 488–494. (in Russ.)
  7. Pintelon R., Guillaume P., Rolain Y., Schoukens J., Van Hamme H. IEEE Transactions on automatic control, 1994, no. 11(39), pp. 2245–2260, DOI: 10.1109/9.333769.
  8. Ortega R., Nikiforov V., Gerasimov D. Annual Reviews in Control, 2020, vol. 50, рр. 278–293, DOI: 10.1016/j.arcontrol.2020.06.002.
  9. Guo K., Pan Y. Annual Reviews in Control, 2023, vol. 55, рр. 279–290, DOI: 10.1016/j.arcontrol.2022.12.001.
  10. Wang L., Ortega R., Bobtsov A., Romero J. G., Yi B. International Journal of Control, 2023, рр. 1–16, DOI: 10.1080/00207179.2023.2246595.
  11. Gerasimov D.N., Nikiforov V.O. International Journal of Adaptive Control and Signal Processing, 2022, no. 6(36), pp. 1285–1304, DOI: 10.1002/acs.3311.
  12. Ortega R., Gromov V., Nuño E., Pyrkin A., Romero J.G. Automatica, 2021, vol. 127, p. 109544, DOI: 10.1016/j.automatica.2021.109544.
  13. Abdulov A., Abramenkov A. Proceedings of 2021 International Russian Automation Conference (RusAutoCon), Sochi, IEEE, 2021, рр. 1041–1045, DOI: 10.1109/RusAutoCon52004.2021.9537456.
  14. Fossen T.I. Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley and Sons, 2011.
  15. Glushchenko A., Lastochkin K. Preprint arxiv.org 2310.14073, рр.1–6, https://arxiv.org/abs/2310.14073.