DOI 10.17586/0021-3454-2024-67-5-406-416
UDC 535.3
MODELING OF LASER SIGNAL PROPAGATION THROUGH LOCAL INHOMOGENEITIES OF THE MEDIUM
Udmurt Federal Research Center of the Ural Branch of the RAS, Laboratory of Information and Measuring Systems ; Junior Researcher
A. I. Kalugin
Udmurt Federal Research Center of the Ural Branch of the RAS, Laboratory of Machine Learning and Processing of Big Data of Industrial Cyber Systems ; Senior Researcher
E. A. Antonov
Udmurt Federal Research Center of the Ural Branch of the RAS, Laboratory of Machine Learning and Processing of Big Data of Industrial Cyber Systems ; Senior Researcher
M. Y. Alies
Udmurt Federal Research Center of the Ural Branch of the RAS; Director of the Center
Read the full article
Reference for citation: Kochurova D. N., Kalugin A. I., Antonov E. A., Alies M. Yu. Modeling of laser signal propagation through local inhomogeneities of the medium. Journal of Instrument Engineering. 2024. Vol. 67, N 5. P. 406–416 (in Russian). DOI: 10.17586/0021-3454-2024-67-5-406-416.
Abstract. Distortions in the spatial and temporal distribution of laser pulse power density introduced by the propagation medium are studied. Information about such changes is necessary in laser ranging problems, including object recognition. Based on the developed program for solving the radiation transfer equation by the method of characteristics for modeling a laser signal propagation through the atmosphere in the presence of turbulence associated with local natural and anthropogenic phenomena, the impact of these phenomena on the spatial and temporal shape of the laser pulse are revealed. Results of calculating the influence of turbulence on the temporal and spatial shapes of the signal are analyzed. Phenomena are identified in which significant distortion of a laser pulse incident on an object occurs, and it has been established that such distortions can lead to errors in object recognition in laser ranging systems.
Abstract. Distortions in the spatial and temporal distribution of laser pulse power density introduced by the propagation medium are studied. Information about such changes is necessary in laser ranging problems, including object recognition. Based on the developed program for solving the radiation transfer equation by the method of characteristics for modeling a laser signal propagation through the atmosphere in the presence of turbulence associated with local natural and anthropogenic phenomena, the impact of these phenomena on the spatial and temporal shape of the laser pulse are revealed. Results of calculating the influence of turbulence on the temporal and spatial shapes of the signal are analyzed. Phenomena are identified in which significant distortion of a laser pulse incident on an object occurs, and it has been established that such distortions can lead to errors in object recognition in laser ranging systems.
Keywords: laser signal, method of characteristics, atmosphere, turbulence, long-range beam profile, laser location
References:
References:
- Baulin F. B., Buryi E. V. Computer Optics, 2019, no. 1(43), pp. 5–13, DOI: 10.18287/2412-6179-2019-43-1-5-13 (in Russ.).
- Labunets L. V., Borzov A. B., Akhmetov I. M. Opticheskii Zhurnal, 2022, no. 4(89), pp. 40–51, DOI: 10.17586/1023- 5086-2022-89-04-40-51 (in Russ.).
- Hao Q., Cheng Y., Cao J., Zhang F., Zhang X., Yu H. Opt. Express, 2016. no. 22(24), pp. 25026, DOI:10.1364/ oe.24.025026.
- Ognev B. I., Skladchikov S. A., Chulyaeva E. G. Lasers. Measurements. Information, 2021, no. 2(1), pp. 12–16, DOI: 10.51639/2713-0568_2021_1_2_12 (in Russ.).
- Aksenov V. P., Dudorov V. V., Kolosov V. V. Optika Atmosfery i Okeana, 2018, no. 5(31), pp. 349–354, DOI: 10.15372/ AOO20180503 (in Russ.).
- Bouhadda M., Abbou F., Serhani M., Chaatit F., Abid A. Boutoulout. Optik (Stuttg), 2020, vol. 200, pp. 163327, DOI:10.1016/j.ijleo.2019.163327.
- Banakh V. A., Gerasimova L. O., Smalikho I. N. Quantum Electron., 2015, no. 3(45), pp. 258–264, DOI 10.1070/ QE2015v045n03ABEH015620.
- Cai X., Ding L, Liu J., Liu L., Zhang K. Proc. SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, 2003, pp. 362, DOI: 10.1117/12.466082.
- Alies M. Yu., Kalugin A. I., Kochurova D. N., Antonov E. A., Trubitsin V. Yu. Chemical physics and mesoscopy, 2022, no. 4(24), pp. 454–462, DOI: 10.15350/17270529.2022.4.36 (in Russ.).
- Xu X., Zhang H., Luo M., Tan Z., Zhang M., Yang H., Li Z. Infrared Phys. Technol., 2019, vol. 96, pp. 330–339, DOI: 10.1016/j.infrared.2018.12.003.
- Li Y., Gao D., Liao H. OSA Contin, 2020, no. 4(3), pp. 1049–1057, DOI: 10.1364/OSAC.388418.
- Tsybulin I. V., Skalko Yu. I., Pavlova E. S. Proceedings of MIPT, 2015, no. 2(7), p. 51–59. (in Russ.) 13. Galanin M. P., Lukin V. V., Chechetkin V. M. Preprints of the Institute for Problems of Mathematics, 2010, no. 59, 30 p. (in Russ.).
- Vozmishchev I.Yu., Karaichev A.S., Shemyakin V.N. Materialy 76-y Nauchno-tekhnicheskoy konferentsii Sankt- Peterburgskogo NTO RES im. A.S. Popova (Proceedings of the 76th Scientific and Technical Conference of the St. Petersburg Scientific and Technical Organization of the Distribution Zone named after. A.S. Popov), 2020, no. 75(1), pp. 56–58 (in Russ.).
- Hahn H. K., Sachs R. arXiv: General Mathematics, 2008, 35 p., DOI: 10.48550/arXiv.0801.1441.
- Vogel H. Math. Biosci, 1979, no. 3(44), pp. 179–189, DOI: 10.1016/0025-5564(79)90080-4.
- Zuev V. E., Banakh V. A., Pokasov V. V. Optika turbulentnoj atmosfery (Optics of a Turbulent Atmosphere), Leningrad, 1988, 269 p. (in Russ.).
- Mathar R. J. Journal of Optics A: Pure and Applied Optics, 2007, no. 5(9), pp. 470–476, DOI: 10.1088/1464- 4258/9/5/008.
- Ishimaru A. Wave Propagation and Scattering in Random Media, 1978.
- Kozintsev V. I., Belov M. L., Orlov V. M., Gorodnichev V. A., Strelkov B. V. Osnovy impul'snoj lazernoj lokacii (Fundamentals of Pulsed Laser Location), Moscow, 2006. 512 p. (in Russ.).
- Isakov A. A. Optika Atmosfery i Okeana, 1999, no 1(12), pp. 23–29 (in Russ.).