ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2024-67-10-837-843

UDC УДК 62-235

MODEL ASSESSMENT OF THE POSSIBILITY OF USING A STEPPED TRANSMISSION IN AN ELECTRIC VEHICLE

D. E. Ishimov
Peter the Great St. Petersburg Polytechnic University ;


N. N. Demidov
Peter the Great St. Petersburg Polytechnic University; Higher School of Transport;


E. B. Sedakova
Institute for Problems in Mechanical Engineering of the RAS, Laboratory of Friction and Wear;

Reference for citation: Ishimov D. E., Demidov N. N., Sedakova E. B. Model assessment of the possibility of using a stepped transmission in an electric vehicle. Journal of Instrument Engineering. 2024. Vol. 67, N 10. P. 837–843 (in Russian). DOI: 10.17586/0021-3454-2024-67-10-837-843.

Abstract. The main transmission schemes of modern vehicles are considered, the practice of their use by large concerns as part of electric vehicles is analyzed. The possibilities and advantages of using transmissions with variable gear ratios are shown, and the main problems affecting the efficiency of an electric vehicle as a whole are highlighted. Based on results of calculations, recommendations are developed regarding the selection of the main parameters of the electric vehicle transmission, depending on the requirements and operating conditions. The recommendations are aimed at increasing the efficiency and improving the traction characteristics of an electric vehicle. In the MATLAB Simulink environment, a model evaluation of a transmission with an unfixed gear ratio as part of a vehicle with an electric power plant was performed and an analysis of the possibility of using such a transmission was carried out. A method for determining the optimal transmission parameters based on the developed vehicle model in the Simulink environment is proposed.
Keywords: electric vehicle, efficiency, transmission parameters, traction characteristics, efficiency, variable ratio transmission

Acknowledgement: the study was supported by the Russian Science Foundation grant No. 22-19-00178, https://rscf. ru/project/22-19-00178/.

References:

1. Baulina E.E., Krutashov A.V., Serebryakov V.V. Mashinostroyeniye i komp’yuternyye tekhnologii, 2014, no. 6, pp. 93–106. (in Russ.) 2. Sorniotti A. et al. 2010 IEEE Vehicle Power and Propulsion Conference, 2010, рр. 1–6. 3. Vehviläinen M. et al. Energies, 2022, no. 7(15), pp. 2407. 4. Ahssan M. R., Ektesabi M. M., Gorji S. A. SAE International Journal of Alternative Powertrains, 2018, no. 2(7), pp. 169–182. 5. Tarasik V. P., Puzanova O. V. Vestnik Belorussko-Rossiyskogo universiteta, 2020, no. 4(69), pp. 50–60. (in Russ.) 6. Porshnev G.P., Porshneva E.G., Khudorozhkov S.I. Proyektirovaniye avtomobiley i traktorov. Konstruirovaniye i raschet transmissiy avtomobiley (Design of Automobiles and Tractors. Design and Calculation of Automobile Transmissions), St. Petersburg, 2015, 106 р. (in Russ.) 7. Pantyushin V.S., ed., Elektrotekhnika (Electrical Engineering), Moscow, 1960, 632 р. (in Russ.) 8. Walker P. D. et al. SAE Technical Papers, March 2015, DOI:10.4271/2015-01-0052. 9. Ruan J., Walker P., Zhang N. International Journal of Automotive Engineering, 2018, no. 4(9), pp. 268–275. 10. Machado F. A. et al. IEEE Open Journal of Vehicular Technology, 2021, vol. 2, рр. 419–435. 11. Ruan J. et al. Advances in Mechanical Engineering, 2018, no. 2(10), pp. 1687814018758223. 12. Kwon K., Jo J., Min S. Energy, 2021, vol. 236, рр. 121419. 13. Hillesheim T. ATZ worldwide, 2021, no. 5(123), pp. 64–67. 14. Kozlova T.A. Bulletin of Eurasian Science, 2016, no. 5(8), pp. 74. (in Russ.) 15. Dunaev M.P. Information and Mathematical Technologies in Science and Management, 2017, no. 2(6), pp. 65–71. (in Russ.) 16. Breki A.D., Chulkin S.G., Gvozdev A.E., Kolmakov A.G. Material Science, 2021, no. 10, pp. 44–48. (in Russ.) 17. Kuzmin A.M., Chulkin S.G., Breki A.D. Aktual’nyye problemy morskoy energetiki (Actual Problems of Marine Energy), Proc. of the 11th International Scientific and Technical Conference, St-Petersburg, February 17–18, 2022, рр. 377– 381. (in Russ.) 18. Drozdov Yu.N., Malenko I.P., Malenko P.I. Vestnik mashinostroyeniya, 2015, no. 2, pp. 44–52. (in Russ.) 19. Kuzmin A.M., Chulkin S.G., Breki A.D. Proceedings of the Krylov State Research Center, 2021, no. S1, pp. 295–297. (in Russ.) 20. Lashkhi V.L., Mas’ko S.V., Samusenko V.D., Shcherbakov Yu.I., Buyanovskiy I.A. Sborka v mashinostroyenii, priborostroyenii, 2023, no. 12, pp. 543–547. (in Russ.) 21. Garkunov D. N. Babel’ V.G., Mel’nikov E.L., Shchedrin A.V., Minyazeva L.Kh., Babel’ A.L. Remont. Vosstanovleniye. Modernizatsiya, 2020, no. 4, pp. 17–24. (in Russ.) 22. Patent RU 2570643 C1, Protivoiznosnaya prisadka (Anti-Wear Additive), A.P. Perekrestov, Yu.N. Drozdov, V.A. Chanchikov, I.N. Guzhvenko, S.A. Svekol’nikov, Priority 10.12.2015. (in Russ.)