DOI 10.17586/0021-3454-2024-67-12-1065-1072
UDC 620.19
IMPROVEMENT OF THE METHOD OF AUTOMATION OF MONITORING OF GAS PIPELINE WEAR USING VIBRATION DATA
Peter the Great St. Petersburg Polytechnic University, Institute of Mechanical Engineering, International Scientific-Educational Center BaltTribo-Polytechnic;
M. A. Skotnikova
St. Petersburg Polytechnic University, Higher School of Mechanical Engineering; Institute of Mechanical Engineering, Materials and Transport;
A. A. Alkhimenko
Peter the Great St. Petersburg Polytechnic University, Higher School of Advanced Digital Technologies, Scientific and Technological Complex New Technologies and Materials; Director of the Complex
Abstract. The features of monitoring the wear of gas pipeline surface and the steering rod of the equipment are considered. An easy-to-use algorithm for automatic detection of damage to the main pipeline based on vibration data is proposed. The use of the modal analysis method, data cleaning procedure, damage detection algorithm based on the Mahalanobis distance squared method, and construction of logistic curves allow for automation of the process of steering rod monitoring. It is shown that with an increase in the damage area and an increase in the modal attenuation coefficient from 5/8L to 8/10L, the proportion of true positive results is 100%, and the predictive ability of the model increases with the use of a moving average of the modal attenuation.
Acknowledgement: The study was supported by the Russian Science Foundation Grant No. 22-19-00178, https://rscf.ru/project/22-19-00178/.
References:
1. Medvedeva M.L. Osnovy elektrokhimicheskoy korrozii i zashchity oborudovaniya pri transporte i khranenii nefti i gaza (Fundamentals of Electrochemical Corrosion and Equipment Protection During Transportation and Storage of Oil and Gas), Moscow, 2004, 102 р. (in Russ.) 2. Gerasimov V.V. Prognozirovaniye korrozii metallov (Forecasting of Metal Corrosion), Moscow, 1989, 151 р. (in Russ.) 3. Mustafin F.M. et al. Zashchita truboprovoda ot korrozii (Pipeline Corrosion Protection), Vol. 1, St. Petersburg, 2005, 617 р. (in Russ.) 4. Vorobyeva G.Ya. Korrozionnaya stoykost’ materialov v korrozionnykh sredakh khimicheskikh proizvodstv (Corrosion Resistance of Materials in Corrosive Environments of Chemical Industries), Moscow, 1975, 300 р. (in Russ.) 5. Shumaylov A.S., Gumenov A.G., Moldovanov O.I. Diagnostika magistral’nykh truboprovodov (Diagnostics of Main Pipeline), Moscow, 1992, 251 р. (in Russ.) 6. Prusenko B.E., Martynyuk V.F., eds., Analiz avariy i neschastnykh sluchayev na truboprovodnom transporte Rossii (Analysis of Accidents and Incidents in Pipeline Transport in Russia), Moscow, 2003, 351 р. (in Russ.) 7. Lucà F., Manzoni S., Cigada A., Barella S., Gruttadauria A., and Cerutti F. Sensors, 2022, no. 4(22), pp. 1370. 8. Awadallah O., Sadhu A. Journal of Infrastructure Intelligence and Resilience, 2023, no. 1(2), pp. 100024. 9. El Mountassir M., Mourot G., Yaacoubi S., Maquin D. IFAC-PapersOnLine, France, 2018, no. 24(51), pp. 941–948. 10. Eybpoosh M., Bergés M., & Noh H.Y. Structural Control and Health Monitoring, 2016, no. 2(23), pp. 369–391. 11. Eybpoosh M., Bergés M., & Noh H.Y. Mechanical Systems and Signal Processing, 2017, vol. 82, рр. 260–278. 12. Farrar C.R., & Worden K. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2007, no. 365(1851), pp. 303–315. 13. Davis J., Goadrich M. Proc. of 23 Intern. Conf. on Machine Learning, Pittsburgh, PA, 2006. 14. Lowe M.J., Alleyne D.N., & Cawley P. Ultrasonics, 1998, no. 1-5(36), pp. 147–154. 15. Kharrat M., Zhou W., Bareille O., Ichchou M. Proc. of the 8th Intern. Conf. on Structural Dynamics, EURODYN 2011, Leuven, Belgium, 4–6 July 2011, рр. 2272–2279.