DOI 10.17586/0021-3454-2025-68-1-56-66
UDC 681.78
DEPENDENCE OF A QUANTUM ROTATION SENSOR CHARACTERISTICS ON CHANGES IN PARAMETERS OF THE OPTICAL ELEMENTS
Concern CSRI Elektropribor, JSC, Saint Petersburg, 197046, Russian Federation; ITMO University, Saint Petersburg, 197101, Russian Federation; Design Engineer; PhD Student
M. I. Evstifeev
Concern “CSRI Elektropribor” JSC, Saint Petersburg, 197046, Russian Federation; Head of section
Abstract. For a quantum sensor of rotation, the influence of displacements of the optical system elements on the radiation power imparted to the ensemble of atoms of the working substance located in the gas cell is considered. Based on obtained data, changes in the accuracy characteristics of the quantum rotation sensor are analyzed. Linear and angular displacements of the elements of the optical system of the device are investigated. Cell parameters are identified that allow achieving insensitivity of the accuracy characteristics of the quantum rotation sensor to linear displacements of the elements of the optical system by up to 0.15 mm.
References:
1. Litmanovich Yu.A., Vershovsky A.K., Peshekhonov V.G. Materialy plenarnogo zasedaniya 7-y Rossiyskoy mul’tikonferentsii po problemam upravleniya (Proceedings of the Plenary Session of the 7th Russian Multi-conference on Management Problems), St. Petersburg, 2014, рр. 35–42. (in Russ.) 2. Walker T. G. and Larsen M. S. Gyroscopy and Navigation, 2018, no. 1(26), pp. 28–54. (in Russ.) 3. Ranjbaran M., Tehranchi M.M., Hamidi S.M., Khalkhali S.M.H. Journal of Magnetism and Magnetic Materials, 2019, vol. 469, рр. 522–530, https://doi.org/10.1016/j.jmmm.2018.09.031. 4. Larsen M., Bulatowicz M. Proc. IEEE Intern. Frequency Control Symposium, 2012, DOI: 10.1109/fcs.2012.6243606. 5. Franz F. and Volk C. Physical review A, 1976, no. 5(14), pp. 1711. 6. Eklund E.J. Microgyroscope based on spin-polarized nuclei, PhD thesis, University of California, Irvine, 2008. 7. Walker T.G. and Larsen M.S. Advances in Atomic, Molecular, and Optical Physics, 2016, no. 65, pp. 373–401. 8. Patent US 3,778,700, Optically pumped nuclear magnetic resonance gyroscope, D. Bayley, I. Greenwood, and J. Simpson, Dec. 11, 1973. 9. Noor R.M. and Shkel A.M. Journal of Microelectromechanical Systems, 2018, no. 6(27), pp. 1148–1159, DOI: 10.1109/ JMEMS.2018.2874451. 10. Bezmen G.V., Shevchenko A.N., Kostin P.N., Berzeitis A.N., Bezmen V.S., Petrov V.I. Gyroscopy and Navigation, 2020, no. 2(11), pp. 115–123. 11. Vershovskii A.K., Litmanovich Yu.A., Pazgalev A.S., Peshekhonov V.G. Gyroscopy and Navigation, 2018, no. 1(26), pp. 55–80, DOI 10.17285/0869-7035.2018.26.1.055-080. 12. Sakamoto Y., Bidinosti C.P., Ichikawa Y. et al. Hyperfine Interact, 2015, vol. 230, рр. 141–146, https://doi.org/10.1007/ s10751-014-1109-5. 13. Siraya Т.N. Gyroscopy and Navigation, 2010, no. 2, pp. 29–36. (in Russ.) 14. Shevchenko A.N., Zakharova Е.А. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, no. 4(19), pp. 567–573, DOI: 10.17586/2226-1494-2019-19-4-567-573. (in Russ.) 15. Evstifeev M.I., Zavitaev A.S. IOP Conf. Series: Materials Science and Engineering, 2022, no. 012014(1215), pp. 1–8. 16. Zavitaev A., Evstifeev M. 2023 International Conference on Ocean Studies (ICOS), 2023, pp. 29–32. 17. Cronin A.D., Schmiedmayer J., and Pritchard D.E. Reviews of Modern Physics, 2009, no. 3(81), pp. 1051. 18. Patent US 7,292,031, Micro-cell for NMR gyroscope, H.C. Abbink, E. Kanegsberg, K.D. Marino, and C.H. Volk, Nov. 6, 2007. 19. Eklund E.J. and Shkel A.M. IEEE Journal of Microelectromechanical Systems, 2007, no. 2(16), pp. 232–239. 20. Eklund E.J., Shkel A.M., Knappe S., Donley E., and Kitching J. IEEE (MEMS’07), Conference on Micro Electro Mechanical Systems, Kobe, Japan, January 21–25, 2007. 21. Kajiya J.T. ACM SIGGRAPH computer graphics, 1986, no. 20, pp. 143–150.