ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

1
Issue
vol 68 / January, 2025
Article

DOI 10.17586/0021-3454-2025-68-1-67-78

UDC 531.7

METHOD FOR ASSESSING INTRA-TURN INSTABILITY OF ROTATION SPEED OF A SIMULATION STAND AXES

V. A. Lazarev
St. Petersburg Electrotechnical University, Department of Laser Measuring and Navigation Systems; Assistant


P. A. Ivanov
St. Petersburg Electrotechnical University Department of Laser Measuring and Navigation Systems ;


A. D. Uskov
St. Petersburg Electrotechnical University, Department of Laser Measuring and Navigation Systems;

Reference for citation: Lazarev V. A., Ivanov P. A., Uskov A. D. Method for assessing intra-turn instability of rotation speed of a simulation stand axes. Journal of Instrument Engineering. 2025. Vol. 68, N 1. P. 67–78 (in Russian). DOI: 10.17586/00213454-2025-68-1-67-78.

Abstract. A method for estimating intra-turn instability of the rotation speed of the axes of a simulation stand is proposed. The method is based on cross-calibration of the angular velocity sensor based on the value of the rotation speed of the stand faceplate measured using the fixed angle method. The proposed method allows to increase the reliability of the output data of the angular velocity sensor and, based on the measured values of the instantaneous rotation speed, to estimate the instability of the latter and to isolate the systematic component of the error in the rotation speed of the axes of the simulation stand within a turn. Using a slot sensor (as a zero mark) and a fiber-optic gyroscope (as a meter for the rotation speed of the faceplate around the axes of the rig), the rotation speed of the faceplate around the axes of a twoaxis stand is measured and the errors in their instability are estimated. The obtained data are analyzed, the systematic component of the error in the rotation speed of the faceplate of a two-axis stand around its outer axis is isolated. Using the obtained results in the calibration algorithms of inertial sensors and systems will increase the accuracy and reliability of these calibrations.
Keywords: simulation stand, rotation speed error, rotation speed instability, cross calibration, slot sensor, fiber optic gyroscope

Acknowledgement: The work was supported by the grant of the Russian Science Foundation No. 20-19-00412-P.

References:
  1. Anuchin O.N., Emelyantsev G.I. Integrirovannyye sistemy oriyentatsii i navigatsii (BINS i BISO) (Integrated Systems of Orientation and Navigation (BINS and BISO)), St. Petersburg, 1999. (in Russ.) 
  2. Titterton D., Weston J. Strapdown Inertial Navigation Technology, Institution of Engineering and Technology, 2004, 558 р. 
  3. Dranitsyna E.V., Egorov D.A., Untilov A.A. Gyroscopy and Navigation, 2023, no. 4(31), pp. 277–289. 
  4. Stepanov O.A. Gyroscopy and Navigation, 2002, no. 1, pp. 23–46. (in Russ.) 
  5. Ivanov P.A., Lazarev V.A., Bokhman E.D., Pavlov P.A., Filatov Yu.V. Gyroscopy and Navigation, 2022, no. 3(30), pp. 180–188. 
  6. Boronakhin A.M., Ivanov P.A., Bohman E.D., Filatov Yu.V., Surov I.L. Materialy XVIII Sankt-Peterburgskoy mezhdunarodnoy konferentsii po integrirovannym navigatsionnym sistemam (Proceedings of the XVIII St. Petersburg International Conference on Integrated Navigation Systems), St. Petersburg, 2011, рр. 34–41. (in Russ.) 
  7. Dranitsyna E.V. Kalibrovka izmeritel’nogo modulya pretsezionnoy BINS na volokonno-opticheskikh giroskopakh (Calibration of the Measuring Module of a Precision SINS on Fiber-optic Gyroscopes), Candidate’s thesis, St. Petersburg, 2016. (in Russ.) 
  8. Ivanov P.A., Boronakhin A.M., Surov I.L. Nano- and microsystem technology, 2010, no. 1, pp. 35–41. (in Russ.) 
  9. Ivanov P.A. Razrabotka i issledovaniye metodov ispytaniy mikromekhanicheskikh moduley (Development and Research of Testing Methods for Micromechanical Modules), Candidate’s thesis, St. Petersburg, 2011. (in Russ.) 
  10. http://inertech-ltd.com. (in Russ.) 
  11. https://www.ideal-aerosmith.com/products/1-2-or-3-axis-rate-and-positioning-tables. (in Russ.) 
  12. https://www.acutronic.com/simulation-test. (in Russ.) 
  13. Bychkov M.G., Ladygin A.N. Doklady nauchno-metodicheskogo seminara (Reports of the Scientific and Methodological Seminar), 2013, рр. 5–22. (in Russ.) 
  14. Derevyanko A.E., Valiev A.A., Rozhnov A.V., Tlyaumbetov I.A. Prioritetnyye napravleniya innovatsionnoy deyatel’nosti v promyshlennosti (Priority Areas of Innovation Activity in Industry), Collection of scientific articles based on the results of the 10th Intern. Sci. Conf., Kazan, October 30–31, 2020, vol. 1, рр. 84–86. (in Russ.) 
  15. Dranitsyna E.V., Galieva N.G., Pavlov A.A. Navigatsiya i upravleniye dvizheniyem (Navigation and Motion Control), Proceedings of the XVII Conference of Young Scientists, St. Petersburg, 2015, рр. 342–348. (in Russ.) 
  16. Ermakov R.V., Seranova A.A., Lvov A.A, Kalikhman D.M. Caspian Journal: management and high technologies, 2019, no. 4, pp. 144–164. (in Russ.) 
  17. Kalikhman D.M., Kalikhman L.Ya., Sadomtsev Yu.V., Deputatova E.A., Nakhov S.F., Sapozhnikov A.I., Mezhiritsky E.L., Nikiforov V.M. Aviation Industry, 2010, no. 1, pp. 43–49. (in Russ.) 
  18. Kalikhman D.M., Deputatova E.A., Pchelintseva S.V., Gorbachev V.O. Gyroscopy and Navigation, 2022, no. 3(30), pp. C. 155–169. 
  19. Ermakov R.V., Kalikhman D.M., Kalikhman L.Ya., Nakhov S.F., Turkin V.A., Lvov A.A., Sadomtsev Yu.V., Krivtsov E.P., Yankovsky A.A. XXIII Sankt-Peterburgskaya Mezhdunarodnaya konferentsiya po integrirovannym navigatsionnym sistemam (XXIII St. Petersburg International Conference on Integrated Navigation Systems.), St. Petersburg, 2016, рр. 302–307. (in Russ.)
  20. Ermakov R.V., Lvov A.A., Svetlov M.S. Izvestiya SFedU. Engineering Sciences, 2017, no. 3(188), pp. 6–17. DOI 10.23683/2311-3103-2017-3-6-17. (in Russ.)