ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 68 / February, 2025
Article

DOI 10.17586/0021-3454-2025-68-2-168-175

UDC 004.896

INTELLIGENT DIAGNOSTICS OF CLEANROOM VENTILATION AND AIR CONDITIONING SYSTEMS

Y. E. Tupitsin
A. F. Mozhaisky Military Space Academy, Department o Life Support Systems for Ground-Based Space Infrastructure Facilities;


A. S. Matyunin
A. F. Mozhaisky Military Space Academy, Department of Life Support Systems for Ground-Based Space Infrastructure Facilities; Lecturer


M. V. Egorichev
A. F. Mozhaisky Military Space Academy, Department of Life Suppor Systems for Ground-Based Space Infrastructure Facilities; Lecturer


A. A. Golub
A. F. Mozhaisky Military Space Academy, Department of Life Support Systems for Ground-Based Space Infrastructure Facilities ; Lecturer

Reference for citation: Тупицин Ю. Е., Матюнин А. С., Егоричев М. В., Голуб А. А. Интеллектуальное диагностирование системы вентиляции и кондиционирования воздуха чистого помещения // Изв. вузов. Приборостроение. 2025. Т. 68, № 2. С. 168–175. DOI: 10.17586/0021-3454-2025-68-2-168-175.

Abstract. An approach to training diagnostic models of complex technical systems with multiple uncertainty of a priori information is proposed. Since it is impossible to determine the law of distribution of values of parameters of working processes, it is proposed to use methods of nonparametric statistics. The training procedure is based on the use of topology and properties of finite-dimensional Euclidean spaces. An example of a training procedure using a computational scheme according to the Robbins-Monroe algorithm is given. A graphical interpretation of the construction of a standard of parametric failure of an element when constructing diagnostic models of equipment of the ventilation and air conditioning system of a clean room of a special facility is presented.
Keywords: controlled workflow parameters, training methods, diagnostic model, technical condition, Robbins–Monroe algorithm

References:

1. Fomin Ya. A. Raspoznavaniye obrazov. Teoriya i primeneniya (Pattern Recognition. Theory and Applications), Moscow, 2010, 368 р. (in Russ.) 2. Loban A.V. Informatsionnaya tekhnologiya raspredelennogo diagnostirovaniya kosmicheskikh apparatov (Information Technology of Distributed Diagnostics of Spacecraft), Moscow, Berlin, 2015, 146 р. (in Russ.) 3. Senchenkov V.I. Modeli, metody i algoritmy analiza tekhnicheskogo sostoyaniya (Models, Methods and Algorithms for Technical Condition Analysis), Saarbrücken, 2013, 377 р. (in Russ.) 4. Chunhui Z., Furong G. Chemical Engineering Science, 2015, vol. 138, рр. 531–543. 5. Lu G., Zhou Y., Lu C., Li X. Mechanical Systems and Signal Processing, 2017, vol. 83, рр. 533–548. 6. Budko P.A., Vinogradenko A.M., Litvinov A.I. Mechatronics, automation, control, 2014, no. 9, pp. 53–58. (in Russ.) 7. Liu W.Y., Gao Q.W., Ye G. et al. Measurement, 2015, vol. 74, рр. 70–77. 8. Skliros C., Esperon M.M., Fakhre A., Jennions I.K. Diagnostyka, 2019, vol. 20(1), рр. 3–21. 9. Shi P., Liang K., Han D., Zhang Yi. Journal of Vibroengineering, 2017, vol. 19(8), рр. 5932–5946. 10. Senchenkov V.I., Matyunin A.S. Pribory i sistemy. Upravleniye, kontrol’, diagnostika, 2020, no. 8, pp. 18–26. (in Russ.)