ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

5
Issue
vol 68 / May, 2025
Article

DOI 10.17586/0021-3454-2025-68-5-371-379

UDC 004.942

MULTI-CRITERIA OPTIMIZATION OF CLUSTER STRUCTURE WITH CONTAINER VIRTUALIZATION

V. A. Bogatyrev
ITMO University, Saint Petersburg, 197101, Russian federation; Saint Petersburg State University of Aerospace Instrumentation, Saint Petersburg, 190000, Russian Federation; Professor; Professor


. Phung Van Quy
ITMO University, Saint Petersburg, 197101, Russian Federation; PhD Student

Reference for citation: Bogatyrev V.A., Phung Van Quy. Multi-Criteria Optimization of Cluster Structure with Container Virtualization. Journal of Instrument Engineering. 2025. Vol. 68, N 5. P. 371–379 (in Russian). DOI: 10.17586/0021-3454-2025-68-5-371-379.

Abstract. The practice of deploying applications in the form of containers, which has become widespread in recent years due to its high efficiency and flexibility in managing computing resources is discussed. Containerization allows accelerating the development and deployment of software, increases the stability, performance and reliability of applications during adaptive reconfiguration of the system to changes in request flows and accumulation of failures. When substantiating the choice of design solutions, the efficiency of cluster systems with container virtualization is estimated by the profit received from operating the system per unit of time. This profit depends on the impact of the number of deployed containers on request servicing delays and on infrastructure support. The difficulty of estimating the average wait time for requests in the cluster nodes is due to the complex effect of dynamic sharing of shared computing resources of nodes between active containers on their performance during container virtualization. The study is aimedat improving the efficiency of cluster container virtualization systems with adaptive reconfiguration of the number of nodes and containers deployed in them depending on the intensity of requests coming into the cluster. The choice of cluster configuration is made taking into account the reduction of operating costs and increase in profit from the timely and error-free execution of functional requests.
Keywords: cluster, virtualization, container, multi-criteria, optimization, profit

References:
  1. Koren H. Fault tolerant systems, San Francisco, Morgan Kaufmann publications, 2009, 309 p.
  2. Polovko A.M., Gurov S.V. Osnovy teorii nadezhnosti (Fundamentals of Reliability Theory), St. Petersburg, 2006, 702 р. (in Russ.)
  3. Cherkesov G.N. Nadezhnost' apparatno-programmnykh kompleksov (Reliability of Hardware and Software Systems), St. Petersburg, 2005, 479 р. (in Russ.)
  4. Aysan H. Fault-tolerance strategies and probabilistic guarantees for real-time systems, Doctor’s thesis, Mälardalen University, 2012, 109 p.
  5. Shubinsky I.B., Rozenberg I.N., Papic L. Reliability: Theory & Applications, 2017, no. 1(12), pp. 18–25.
  6. Kleinrock L. Queueing Systems, NY, Wiley Interscience, 1975–1976.
  7. Kleinrock L. Queueing Systems, Vol. II – Computer Applications, NY, Wiley Interscience, 1976, 576 p.
  8. Hardikar S., Pradeep A., and Sameer R. 2021 2nd Intern. Conf. on Electronics and Sustainable Communication Systems, 2021, DOI: 10.1109/ICESC51422.2021.9532917.
  9. Shukur H. et al. Journal of Applied Science and Technology Trends, 2020, no. 2(1), pp. 98–105, DOI: 10.38094/ jastt1331.
  10. Bentaleb O., Belloum A.S.Z., Sebaa A., and El-Maouhab A. The Journal of Supercomputing, 2022, no. 1(78), pp. 1144–1181, DOI: 10.1007/s11227-021-03914-1.
  11. Kim S., Choi Y. Cluster Computing, 2020, vol. 23, рр. 71–85, DOI: 10.1007/s10586-019-02966-6.
  12. Bogatyrev V.A., Bogatyrev A.V. Information Technologies, 2016, no. 6(22), pp. 409–416. (in Russ.)
  13. Tatarnikova Т.М., Arkhiptsev E.D., Karmanovskiy N.S. Journal of Instrument Engineering, 2023, no. 8(66), pp. 646– 651. (in Russ.)
  14. Bogatyrev V.A. Information Technologies, 2006, no. 9, pp. 25–30. (in Russ.)
  15. Bogatyrev V.A. Instruments and Systems: Monitoring, Control, and Diagnostics, 2006, no. 10, pp. 18. (in Russ.)
  16. Pastushok I.A., Turlikov A.M. Journal of Instrument Engineering, 2024, no. 9(67), pp. 759–766, DOI: 10.17586/0021- 3454-2024-67-9-759-766. (in Russ.)
  17. Astakhova T.N., Verzun N.A., Kolbanyov M.O., Polyanskaya N.A., Shamin A.A. Bulletin NGIEI, 2019, no. 4(95), pp. 66–77. (in Russ.)
  18. Zakoldaev D.A., Korobeynikov A.G., Shukalov A.V., Zharinov I.O. IOP Conf. Series: Materials Science and Engineering, 2019, vol. 665, рр. 012015, DOI: 10.1088/1757-899X/665/1/012015.
  19. Astakhova T.N., Kolbanev M.O., Lyamin A.S., Maslov N.S., Maslova D.A. Proceedings of Telecommunication Universities, 2024, no. 4(10), pp. 100–109. (in Russ.)
  20. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, no. 3(23), pp. 608–617. (in Russ.)
  21. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2024, vol. 14123, рр. 236–250, DOI: 10.1007/978- 3-031-50482-2_19.
  22. Bogatyrev V.A., Bogatyrev A.V., Bogatyrev S.V. Communications in Computer and Information Science, 2023, vol. 1748, рр. 104–121, DOI: 10.1007/978-3-031-30648-8_9.
  23. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. 2022 Intern. Conf. on Information, Control, and Communication Technologies (ICCT), 2022, рр. 1–4, DOI: 10.1109/ICCT56057.2022.997660.
  24. Quy Phung Van, Bogatyrev V.A. Journal of Instrument Engineering, 2024, no. 8(67), pp. 647–656. (in Russ.)
  25. Phung Van Quy, Bogatyrev V.A., Karmanovskiy N.S., Le V. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, no. 2(24), pp. 249–255, DOI: 10.17586/2226-1494-2024-24-2-249-255. (in Russ.)