ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

7
Issue
vol 68 / July, 2025
Article

DOI 10.17586/0021-3454-2025-68-6-545-556

UDC 67.02

DEPENDENCE OF SURFACE ROUGHNESS OF TUNGSTEN CARBIDE ALLOYS ON LASER ABLATION PARAMETERS

A. V. Gutorov
ITMO University, Faculty of Control Systems and Robotics;


I. K. Chaika
ITMO University, Institute of Laser Technologies;


A. Yazan
ITMO University, Institute of Laser Technologies;


G. V. Romanova
ITMO University, Saint Petersburg, 197101, Russian Federation; Director of the Laser Technologies Institute


A. A. Petrov
ITMO University, 197101, Saint-Petersburg, Russian Federation; Associate professor


M. Y. Afanasiev
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate professor

Reference for citation: Gutorov A. V., Chaika I. K., Yazan A., Romanova G. V., Petrov A. A., Afanasyev M. Ya. Dependence of surface roughness of tungsten carbide alloys on laser ablation parameters. Journal of Instrument Engineering. 2025. Vol. 68, N 6. P. 545–556 (in Russian). DOI: 10.17586/0021-3454-2025-68-6-545-556.

Abstract. The laser ablation method has significant advantages in processing workpieces from hard materials, since it ensures the removal of material without wear of the forming tool and load on the workpiece. A method for processing tungsten carbide using laser ablation of nanosecond pulse duration is described. The results of the analysis of the tungsten carbide surface morphology after exposure to short laser pulses are presented. The roughness of the processed surface is studied using the contact profilometry method. The effect of laser exposure parameters (pulse repetition rate, pulse duration) on the geometric parameters (ablation depth and roughness) of the surface of tungsten carbide workpieces is studied. It is found that with an increase in energy density, pulse duration and an increase in the overlap coefficient of laser pulses, the roughness of the processed surface increases. The tangential laser processing strategy is shown to provide the best surface quality.
Keywords: pulsed laser ablation, nanosecond laser, tungsten carbide, micro-tool manufacturing, laser processing

Acknowledgement: The work was carried out with the support of the Priority 2030 program. The authors express special gratitude to Prof. V. P. Veiko, Doctor of Engineering Sciences, for valuable comments and suggestions.

References:

1. Warhanek M., Walter C.W., Hirschi M., Boos J.B., Bucourt J.F., & Wegener K. Journal of Manufacturing Processes, 2016, vol. 23, рр. 157–164. DOI:10.1016/j.jmapro.2016.06.023. 2. Masuzawa T. CIRP Annals, 2000, no. 2(49), pp. 473–488, https://doi.org/10.1016/s0007-8506(07)63451-9. 3. Vishal K.S., Shaik S., Sayantan B. et al. JETIR, 2021, no. 8, pp. 212–218. 4. O’Hara J., Fang F. International Journal of Extreme Manufacturing, 2019, no. 1, pp. 1–29. 5. Egashira K., Furukawa T. Precision Engineering – Journal of The International Societies for Precision Engineering and Nanotechnology, 2015, no. 44, pp. 81–86. 6. Abele E., & Fujara M. CIRP Annals, 2010, no. 1(59), pp. 145–150, https://doi.org/10.1016/j.cirp.2010.03.063. 7. Aurich J.C., Reichenbach I.G., & Schüler G.M. CIRP Annals, 2012, no. 1(61), pp. 83–86, https://doi.org/10.1016/j. cirp.2012.03.012. 8. Zhang Z., Peng H., & Yan J. International Journal of Machine Tools and Manufacture, 2013, vol. 65, рр. 99–106, https://doi.org/10.1016/j.ijmachtools.2012.10.007. gashira K., Hosono S., Takemoto S., and Masao Y. Precision Engineering, 2011, no. 4(35), pp. 547–553, DOI: https:// doi.org/10.1016/j.precisioneng.2011.06.002. 10. Cheng X., Wang Z., Kobayashi S., Nakamoto K., Yamazaki K. Intern. J. Comput. Integr. Manuf., 2009, no. 9, pp. 847–856. 11. Timmer J. Laserkonditionieren von CBN- und Diamantschleif-scheiben, Doctor’s thesis, Technische Universität Carolo-Wilhemina zu Braunschweig, 2001. 12. Walter C., Rabiey M., Warhanek M., Jochum N., & Wegener K. CIRP Annals, 2012, no. 1(61), pp. 279–282, https:// doi.org/10.1016/j.cirp.2012.03.001. 13. Tan J.L., Butler D.L., Sim L.M., and Jarfors A.E.W. Applied Physics A, 2010, no. 2(101), pp. 265–269, DOI: https:// doi.org/10.1007/s00339-010-5815-9. 14. Marimuthu S., Dunleavey J., and Smith B. International Journal of Refractory Metals and Hard Materials, 2020, vol. 92, pр. 105338, DOI: https://doi.org/10.1016/j.ijrmhm.2020.105338. 15. Leitz K.-H., Redlingshöfer B., Reg Y., Otto A., & Schmidt M. Physics Procedia, 2011, vol. 12, рр. 230–238, https:// doi.org/10.1016/j.phpro.2011.03.128. 16. Eberle G., Dolt C. 10th CIRP Conference on Photonic Technologies [LANE 2018], Sep. 2018. 17. Hajri M., Pfaff J., Büttner H., Voegtlin M., Kaufmann R., and Wegener K. Procedia CIRP, 2018, vol. 77, pp. 654–657, DOI: https://doi.org/10.1016/j.procir.2018.08.184. 18. Denkena B., Krödel A., & Grove T. Journal of Laser Applications, 2019, no. 2(31), pp. 022004, https://doi. org/10.2351/1.5084724.