DOI 10.17586/0021-3454-2025-68-8-668-679
UDC 681.51
METHOD FOR FAULT IDENTIFYING IN NONLINEAR SYSTEMS
Sevastopol State University, Research Laboratory "Intelligent Systems and Robotics"; Head of the Laboratory
A. N. Zhirabok
Far Eastern Federal University, Department of Automation and Control Processes; Professor
A. V. Zuev
Institute of Marine Technology Problems of the RAS, Far Eastern Branch;
V. V. Filaretov
Institute of Automation and Control Processes of the RAS, Far Eastern Branch, Robotic System Laboratory;
Abstract. The problem of estimating the magnitude of faults in nonlinear dynamic systems in the presence of external disturbances is solved. The solution uses optimal control methods based on the transformation of the original system to a reduced linear system of a special type, sensitive to faults and insensitive to disturbances. Unlike sliding observers, traditionally used to solve this problem, the proposed approach allows avoiding high-frequency switching.
Acknowledgement: This work was supported by a grant from the Russian Science Foundation (project No. 25-29- 00634, https://rscf.ru/project/25-29-00634/).
References:
1. Kabanov A.A., Zuev A.V., Zhirabok A.N., Filaretov V.F. Avtomatika i Telemehanika, 2023, no. 9, pp. 93–105. (in Russ.) 2. Kabanov A.A., Zuev A.V., Filaretov V.F., Zhirabok A.N. Journal of Instrument Engineering, 2022, no. 5(65), pp. 335–342, DOI: 10.17586/0021-3454-2022-65-5-335-342. (in Russ.) 3. Edwards C., Spurgeon S., Patton R. Automatica, 2000, vol. 36, рр. 541–553. 4. Floquet T., Barbot J., Perruquetti W., Djemai M. Intern. J. Control, 2004, vol. 77, рр. 622–629. 5. Yan X., Edwards C. Automatica, 2007, vol. 43, рр. 1605–1614. 6. Rios H., Efimov D., Davila J., Raissi T., Fridman L., Zolghadri A. Intern. J. Adapt. Contr. and Signal Proc., 2014, vol. 28, рр. 1372–1397. 7. Zhirabok A.N., Shumsky A.E., Zuev A.V., Filaretov V.F. Journal of Computer and Systems Sciences International, 2022, no. 3(61), pp. 313–321. 8. Zhirabok A.N., Shumsky A.E., Zuev A.V., Sergiyenko O. Automation and Remote Control, 2022, no. 2(83), pp. 214–236. 9. Ríos-Ruiz C., Osorio-Gordillo G., Souley-Ali H., Darouach M., Astorga-Zaragoza C. Proc. 2019 27th Mediterranean Conference on Control and Automation (MED), 2019, рp. 165–170. 10. Margun A.A., Bui V.H., Bobtsov A.A. Avtomatika i Telemehanika, 2024, no. 11, pp. 36–55. (in Russ.) 11. Nemati F., Safavi S., Zemouche A. Automatica, 2019, vol. 107, рр. 474–482. 12. Venkateswaran S., Liu S., Wilhite B., Kravaris C. Intern. J. Control, 2022, vol. 95, рр. 804–820. 13. Kravaris C. IFAC-PapersOnLine, 2016, vol. 49, рр. 505–510. 14. Isidory A. Nonlinear control systems, Berlin, Springer-Verlag, 1989. 15. Mufti I.H., Chow C.K., Stock F.T. SIAM Rev., 1969, no. 4(11), pp. 616–619. 16. Naidu D.S. Optimal control systems. Electrical Engineering Handbook, Florida, Boca Raton, CRC Press, 2003, 275 p. 17. Bryson A.E, jr. & Ho Y.C. Applied optimal control: optimization, estimation, and control, Waltham, MA, Blaisdell, 1969, 481 p. 18. Khamis A., Naidu D. 2014 American Control Conference (ACC) Portland, Oregon, USA, June 4–6, 2014, рр. 2420–2425. 19. Zhirabok A.N., Ir K.C. Journal of Computer and Systems Sciences International, 2022, no. 1(61), pp. 38–46. 20. Zhirabok A.N., Zuev A.V., Protcenko A.A., Il K.Ch. Measurement Techniques, 2022, no. 6(65), pp. 405–411. 21. Levant A. Intern. J. Control, 2003, vol. 76, рр. 924–941. 22. LEM. LAH 50-P: Current Transducer LAH 50-P, LEM, 2025, https://www.lem.com/sites/default/files/products_ datasheets/lah_50-p.pdf.