ISSN 0021-3454 (печатная версия)
ISSN 2500-0381 (онлайн версия)
Меню

4
Содержание
том 67 / Апрель, 2024
СТАТЬЯ

DOI 10.17586/0021-3454-2017-60-6-545-551

УДК 528.8:536.33

КОЛЕБАНИЯ ТЕМПЕРАТУРЫ ИЗОТЕРМИЧЕСКИХ ЦИЛИНДРИЧЕСКИХ ОБЪЕКТОВ СО СТАБИЛИЗИРОВАННОЙ ОСЬЮ НА КРУГОВОЙ СОЛНЕЧНО-ПОСТОЯННОЙ ОРБИТЕ

Дзитоев А. М.
Военно-космическая академия им. А.Ф. Можайского, Россия, Санкт-Петербург;


Лаповок Е. В.
ВКА им. А.Ф.Можайского; научный сотрудник


Пеньков М. М.
ВКА им. А. Ф. Можайского; профессор, начальник академии


Ханков С. И.
Военно-космическая академия им. А.Ф. Можайского, Россия, Санкт-Петербург; ст. научн. сотрудник


Читать статью полностью 

Аннотация. Предложена методика расчета нестационарной температуры изотермического космического объекта цилиндрической формы с осью, стабилизированной в мировой системе координат, движущегося по круговой солнечно-постоянной орбите в плоскости терминатора. К такому классу объектов может относиться корпус телескопа трубчатой конструкции, ось которого постоянно ориентирована в направлении на удаленный объект, например, звезду. Колебания уровня температуры объектов такого класса определяются периодическими изменениями эффективного коэффициента облученности, которые воспроизводятся от цикла к циклу полного периода обращения объекта вокруг Земли. Колебания температур в случае больших значений постоянной термической инерции, достигаемых при достаточно большой толщине стенки цилиндра, могут осуществляться с временной задержкой относительно изменений внешних тепловых воздействий, определяемых варьированием коэффициента облученности. С ростом высоты орбиты средние значения эффективных коэффициентов облученности существенно уменьшаются — от десятых долей на 600 км до сотых долей на 10 000 км и до тысячных долей на геостационарной орбите. Одновременно снижается размах колебаний эффективных коэффициентов облученности, при этом возрастает вклад в энергетический баланс космического объекта мощности поглощаемого солнечного излучения. С ростом высоты от 600 до 40 000 км температурный уровень объекта с абсолютно черной поверхностью понижается на 35 К, амплитуда колебаний при этом уменьшается от 5,6 до 0,4 К.
Ключевые слова: космический объект, солнечно-постоянная орбита, нестационарный тепловой баланс космического объекта, тепловое излучение Земли, эффективный коэффициент облученности

Список литературы:
  1. Cullimore B. et al. Automated Multidisciplinary Optimization of a Space-based Telescope // SAE 2002-01-2445. July 2002.
  2. Альтов В. В., Залетаев С. В., Копяткевич Р. М., Абросимов А. И. Исследование теплового режима космических аппаратов оптического назначения // Космонавтика и ракетостроение. 2006. № 3 (44). С. 144—149.
  3. Баёва Ю. В., Лаповок Е. В., Ханков С. И. Аналитическая методика расчета тепловых потоков в околоземном космическом пространстве, формирующих тепловой режим космических телескопов // Оптический журнал.
  4. 2013. Т. 80, № 5. С. 30—37.
  5. Баёва Ю. В., Лаповок Е. В., Ханков С. И. Термооптическая аберрация положения изображения в зеркальных телескопах // Оптический журнал. 2013. Т. 80, № 3. С. 30—36.
  6. Баёва Ю. В., Лаповок Е. В., Ханков С. И. Методика расчета нестационарных температур космического объекта на круговых орбитах // Изв. вузов. Приборостроение. 2013. Т. 56, № 12. С. 51—56.
  7. Дзитоев А. М., Лаповок Е. В., Ханков С. И. Высотные зависимости температуры изотермического космического объекта сферической формы // Научно-технический вестник информационных технологий, механики и оптики. 2014. № 3 (91). С. 119—125.
  8. Дзитоев А. М., Ханков С. И. Тепловое подобие космических объектов типовых конфигураций // Научно-технический вестник информационных технологий, механики и оптики. 2014. № 2 (90). С. 130—136.
  9. Дзитоев А. М., Лаповок Е. В., Ханков С. И. Условия теплового подобия космических объектов конической и цилиндрической формы // Изв. вузов. Приборостроение. 2015. Т. 58, № 12. С. 179—184.
  10. Дзитоев А. М., Лаповок Е. В., Ханков С. .И. Методы аналитического моделирования тепловых режимов космических объектов в околоземном космическом пространстве // Тр. ВКА им. А. Ф. Можайского. 2014. № 1 (642). С. 115—124.
  11. Дзитоев А. М., Лаповок Е. В., Ханков С. И. Тепловые режимы космических объектов. СПб: ВКА им. А. Ф. Можайского, 2016. 172 с.
  12. Баева Ю. В., Лаповок Е. В., Ханков С. И. Методика расчета нестационарных температур космического объекта, движущегося по эллиптической орбите // Научно-технический вестник информационных технологий, механики и оптики. 2013. № 6 (86). С. 67—72.
  13. Дзитоев А. М., Лаповок Е. В., Ханков С. И. Аналитическая методика расчета нестационарной температуры сферического космического объекта при его движении по полярной эллиптической орбите // Тр. ВКА им. А. Ф. Можайского. 2014. № 2 (643). С. 98—106.
  14. Баёва Ю. В., Лаповок Е. В., Ханков С. И. Метод поддержания заданного температурного диапазона космического аппарата, движущегося по круговой орбите с заходом в тень Земли // Изв. вузов. Приборостроение. 2013. Т. 56, № 7. С. 56—61.
  15. Каменев А. А., Лаповок Е. В., Ханков С. И. Аналитические методы расчета тепловых режимов и характеристик собственного теплового излучения объектов в околоземном космическом пространстве. СПб: НТЦ им. Л. Т. Тучкова, 2006. 186 с.
  16. Trenberth K. E., Fasullo J. T., Keihl J. Earth's global energy budget // Bull. Amer. Meteor. Soc. 2009. Vol. 90, N 3. P. 311—323.