ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2017-60-5-431-439

UDC 537.312.52:544.537

USING LASER-INDUCED MICROPLASMA FOR MULTILEVEL PHASE PLATE FABRICATION

V. S. Rumkevich
ITMO University, Department of Laser Technologies; student


R. A. Zakoldaev
ITMO University, Department of Laser Technologies and Applied Ecology, St. Petersburg; Graduate Student


Сергеев М. М.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; научный сотрудник


G. K. Kostyuk
ITMO University, Saint Petersburg, 197101, Russian Federation; Scientific Researcher


Read the full article 

Abstract. Application of the method of processing of transparent materials with laser-induced microplasma to create a multilevel phase plate on fused quartz surface is demonstrated. Optimization of the method for the existing laser system "Minimarker 2" based on Yb-fiber laser with a nanosecond pulse duration (50-200 NS) is described. A software is developed which allows to link parameters of laser treatment with deep relief microstructures, as well as to generate a multilevel phase plate in automatic mode. Based on the results, samples of layered phase plates with binary and discrete structure for testing with He-Ne laser setup are recorded. Comparative analysis of binary and discrete phase plates applied as homogenizers of He-Ne laser radiation is carried out. It is shown that a more uniform distribution of intensity in the beam cross-section is achieved by using discrete phase plate. The proposed method of laser writing of diffractive elements is reported to allow manufacturing of phase plates with a relief depth from 0.1 to 15.0 μm with a step of 50 nm and the minimum size of the cells of 200 μm.
Keywords: plasma, fused silica, phase plate, homogenization, laser micro-processing

References:
  1. Yang C. et al. Opt. Express, 2013, no. 21(9), рр. 11171–11180.
  2. Veron D. et al. Opt. Communications, 1988, no. 65(1), рр. 42–46.
  3. Kato Y. et al. Phys. Rev. Lett., 1984, no. 53(11), рр. 1057.
  4. Wlodarczyk K.L. et al. Appl. Opt., 2010, no. 49(11), рр. 1997–2005.
  5. Lewis C. et al. Rev. of Scientific Instruments, 1999, no. 70(4), рр. 2116–2121.
  6. Yang C. et al. Appl. Opt., 2008, no. 47(10), рр. 1465–1469.
  7. Bansal N.P., Doremus R.H. Handbook of Glass Properties, Elsevier, 2013.
  8. Baglin J. Appl. Surface Science, 2012, no. 258(9), рр. 4103–4111.
  9. Beresna M., Gecevičius M., Kazansky P.G. Advances in Optics and Photonics, 2014, no. 6(3), рр. 293–339.
  10. Lorenz P., Ehrhardt M., Zimmer K. Appl. Surface Science, 2012, no. 24(258), рр. 9742–9746.
  11. Zakoldaev R.A. et al. J. of Laser Micro Nanoengineering, 2015, no. 10(1), рр. 15–19.
  12. Kostyuk G. et al. Optics and Lasers in Engineering, 2015, no. 68, рр. 16–24.
  13. Zakoldaev R.A. et al. Journal of Instrument Engineering, 2016, no. 5(59), рр. 400–406. (in Russ.)
  14. Stevenson R. et al. Opt. Lett., 1994, no. 19(6), рр. 363–365.
  15. Cumme M. et al. Advanced Optical Technologies, 2015, no. 4(1), рр. 47–61.
  16. Patent RU 2016612921, Massiv-menedzher “LIBBH Pipe-line” (Array Manager “LIBBH Pipe-line”), Veyko V.P., Rymkevich V.S., Koval'V.V., Kostyuk G.K., Karlagina Yu.Yu., Zakoldaev R.A., Sergeev M.M. Published 14.03.2016. (in Russ.)