ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

9
Issue
vol 62 / September, 2019
Article

DOI 10.17586/0021-3454-2017-60-7-603-611

UDC 62.50

ENSURING DYNAMIC SYSTEM STABILITY UNDER CONSTRAINED PERTURBATIONS IMPACT

A. A. Vedyakov
ITMO University, Saint Petersburg, 197101, Russian Federation; Senior scientific researcher


V. Y. Tertychny-Dauri
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


Read the full article 

Abstract. The problem of ensuring asymptotic stability of nonlinear dynamic system by means of tuning its parameters is considered for the case when the system is subject to constrained external perturbations. A solution to the problem is found with the use of a robust finitely convergent algorithm of parameters setting. An estimate of attraction domain proportional to the perturbation level is derived.
Keywords: dynamic system, constrained perturbation, target inequality, finitely convergent algorithm

References:
  1. Rouche N., Habets P., Laloy М. Stability Theory by Liapunov's Direct Method. Applied Mathematical Sciences 22,New York,Heidelberg,Berlin, Springer-Verlag, 1977.
  2. Bellman R. Stability theory of differential equations, McGraw-Hill Book Company, 1953, 179 p.
  3. Alfutov N.A., Kolesnikov K.S.Ustoychivost' dvizheniya i ravnovesiya (Stability of the Movement and Balance), Moscow, 2003. (in Russ.)
  4. Zadeh L.A., Desoer C.A. Linear System Theory: the State Space Approach, NY, Dover Publications, 2008.
  5. Liu J., Teel A. IEEE Trans. on Automat. Control, 2016, no. 4(61), рp. 1057–1062.
  6. Clarke F.H., Stern R.J. Systems & Control Letters, 2005, no. 8(54), рp. 747–752.
  7. Fomin V.N., Fradkov A.L., Yakubovich V.A.Adaptivnoe upravlenie dinamicheskimi ob"ektami (Adaptive Control of Dynamic Objects), Moscow, 1981. (in Russ.)
  8. Krasovskiy A.A., ed., Spravochnik po teorii avtomaticheskogo upravleniya (Handbook of Automatic Control Theory), Moscow, 1987. (in Russ.)
  9. Fradkov A.L.Adaptivnoe upravlenie v slozhnykh sistemakh (Adaptive Control in Complex Systems), Moscow, 1990. (in Russ.)
  10. Anderson B.D.O., Bitmead R.R., Johnson C.R., Kokotovic P.V., Kosut R.L., Mareels I.M.Y., Praly L., Riedle B.D. Stability of Adaptive Systems: Passivity and Averaging Analysis, NY, M.I.T. Press, 1986.
  11. Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nelineynoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg, 2000. (in Russ.).
  12. Marino R., Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust, Englewood Cliffs, NJ, Prentice Hall, 1995.
  13. Isidori A. Nonlinear Control System, London, Springer, 1995.
  14. Ioannou P.A., Sun J. Robust Adaptive Control. Engewood Cliffs, NJ, Prentice Hall, 1996.
  15. Narendra K.S., Annaswamy A.M. Stable Adaptive Systems, NY, Dover Publication, 2012.
  16. Raissi T., Ramdani N., Candau Y. Automatica, 2004, no. 10(40), рp. 1771–1777.
  17. Grip H., Johansen T., Imsland L., Kaasa G.-O.Automatica, 2010, no. 1(46), рp. 19–28.
  18. Tertychnyy-Dauri V.Yu. Adaptivnaya mekhanika (Adaptive Mechanics), Moscow, 1998. (in Russ.)
  19. Vedyakov A.A., Tertychnyy-Dauri V.Yu. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, no. 4(16), рp. 620–626. (in Russ.)