ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 61 / NOVEMBER, 2018
Article

DOI 10.17586/0021-3454-2018-61-6-513-520

UDC 535.6; УДК 004.421

METHODS OF ESTIMATION OF VISUAL COMPLEXITY OF LASER RASTER IMAGES

V. T. Prokopenko
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


N. V. Matveev
ITMO University, Saint Petersburg, 197101, Russian Federation; Assosiate professor


N. P. Sapunova
ITMO University, Saint Petersburg, 1097101, Russian Federation; postgraduate


E. K. Egorova
ITMO University, Department of Light Technologies and Optoelectronics; Student


L. S. Elkina
ITMO University, Department of Light Technologies and Optoelectronics; Student


Read the full article 

Abstract. The psychophysiological state of a person when observing visual scenes depends, among other things, on the visual complexity of the images. Images of laser graphics are used to create visual content for the rooms of psychological relief. To increase the effectiveness of such rooms, it is necessary to be able to assess the visual complexity of the images of the laser graphics, as well as its range, in which the images will have a relaxing effect. For these purposes, a method for determining the degree of self-similarity of images based on a pyramid of oriented gradients is proposed.
Keywords: self-similarity, histogram of oriented gradients, fractal dimension, image outline, psychoemotional perception, abstract lase raster image, psychophysiological impact

References:
  1. Tkacheva L.O. Vestnik of St. Petersburg State University, Series 12, 2010, no. 2, pp. 378–387. (in Russ.)
  2. Van den Berg A.E., Hartig T., and Staats H. Journal of Social Issues in Mental Health Nursing, 2007, no. 1(63), pp. 79–96.
  3. Van den Berg A.E., Maas J., Verheij R.A., and Groenewegen P.P. Social Science and Medicine, 2010, no. 8(70), pp. 1203–1210.
  4. Luizov A.V. Glaz i svet (Eye and Light), Leningrad, 1983, 144 р.(in Russ.)
  5. Kravkov S.V. Vzaimodeystvie organov chuvstv (Interaction of Sense Organs), Moscow,Leningrad, 1948. (in Russ.)
  6. Kravkov S.V. Tsvetovoe zrenie (Colour Vision), Moscow, 1951, 175 р. (in Russ.)
  7. Speranskiy A.D. Elementy postroeniya teorii meditsiny(Elements of Creation of the Theory of Medicine), Moscow, Leningrad, 1935. (inRuss.)
  8. Prokopenko V.T., Trofimov V.A., Sharok L.P. Psikhologiya zritel'nogo vospriyatiya (Psychology of Visual Perception), St. Petersburg, 2006. (inRuss.)
  9. Matveev N.V., Prokopenko V.T., Sapunova N.P., Fridman D.A. Light & Engineering, 2016, no. 1, pp. 5–7. (in Russ.)
  10. Kahn P.H., Friedman B., Gill B., Hagman J., Severson R.L., Freier N.G., Feldman N., Carrere S., and Stolyar A. Journal of Environmental Psychology, 2008, no. 2(28), pp. 192–199.
  11. McMahan E.A. and Estes D. The Journal of Positive Psychology, 2015, no. 10(6). DOI: 10.1080/17439760.2014.994224.
  12. Richardson M., Maspero M., Golightly D., Sheffield D., Staples V., and Lumber R. Ergonomics, 2017, no. 2(60), pp. 292–305.
  13. Forsythe A., Cela-Conde C. British Journal of Psychology, 2011, no. 102, pp. 49–70.
  14. Mandelbrot B.B. The fractal geometry of nature, NY, Freeman, 1982, 468 р.
  15. Taylor R.P. Leonardo, 2006, no. 39, pp. 245–251.
  16. Berlyne D.E. Aesthetics and psychobiology, NY, Appleton-Century-Crofts, 1971, 336 р.
  17. Taylor R.P., Spehar B., Van Donkelaar P., Hagerhall C.M. Frontiers in Human Neuroscience, 2011, no. 5, art. no. 60. DOI:10.3389/fnhum.2011.00060.
  18. Spehar B. еt al. Computers & Graphics, 2003, no. 5(27), pp. 813–820.
  19. Moisy F. Computing a fractal dimension with Matlab: 1D, 2D and 3D Box-counting, https://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount.
  20. Fairbanks M.S. and Taylor R.P. Scaling Analysis of Spatial and Temporal Patterns: From the Human Eye to the Foraging Albatross. Non-linear Dynamical Analysis for the Behavioral Sciences Using Real Data, Boca Raton, Taylor and Francis Group, 2011.
  21. Lazebnik S., Schmid C., and Ponce J. IEEE Conference on Computer Vision and Pattern Recognition, 2006, pр. 2169–2178.
  22. Dalal N., Triggs B. Proc. CVPR, 2005, no. 2, pp. 886–893.