ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 62 / November, 2019
Article

DOI 10.17586/0021-3454-2019-62-3-199-207

UDC 62-506

SYNTHESIS OF ROBUST CONTROLLERS FOR AN OBJECT WITH DELAY USING TRADITIONAL CONTROL LAWS

I. V. Gogol
; St. Petersburg State Technological Institute, Department of Processes Automation in Chemical Industry; Post-Graduate Student


O. A. Remizova
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry;


V. V. Syrokvashin
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry; Cand. Techn. Sci.


A. L. Fokin
St. Petersburg State Institute of Technology (Technical University), Department of Automation of Processes in Chemical Industry; Professor


Read the full article 

Abstract. A method is proposed for synthesis of robust controllers based on PI and PID control laws for linear object with delay in the presence of parametric uncertainty of the inertial part and the uncertainty of setting the delay value. The method is based on robust Nyquist stability criterion and dynamic compensation technique. It is argued that the use of the proposed approach allows for a compromise between the rudeness of the control system and its performance.
Keywords: disturbance compensation, robust control, delay in control, transfer function, nominal system, system accuracy, steady-state mode, servo system, predictor

References:
  1. O'Dwyer A. Preprints of Proceedings of PID’00: IFAC Workshop on Digital Control, Terrassa, Spain, 2000, April, pp. 175–180.
  2. O’Dwyer A. Handbook of PI and PID controller tuning rules, 3nd ed., London, Imperial College Press, 2009.
  3. PID Control for Multivariable Processes, Berlin, Heidelberg, Springer-Verlag, 2008, 264 p.
  4. Alexandrov A.G., Palenov M.V. Automation and Remote Control, 2014, no. 2(75), pp. 188–199.
  5. Parsheva E.A., Tsykunov A.M. Automation and Remote Control, 2001, no. 1(62), pp. 124–131.
  6. Pyrkin A.A., Smyshlyaev A., Bekiaris-Liberis N., Krstic M. Time Delay Systems, Prague, Czech Repub-lic, IFAC, 2010, vol. 9, рp. 39–44.
  7. Grigor’yev V.V., Boykov V.I., Bystrov S.V., Ryabov A.I., Mansurova O.K. Journal of Instrument Engi-neering, 2013, no. 4(43), pp. 15–20. (in Russ.)
  8. Gayduk A.R., Plaksiyenko E.A. Mekhatronika, Avtomatizatsiya, Upravlenie, 2013, no. 1, pp. 2–8. (in Russ.)
  9. Vlasov S.M., Borisov O.I., Gromov V.S., Pyrkin A.A., Bobtsov A.A. Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, no. 1(17), pp. 18–25. (in Russ.)
  10. Furtat I.B., Tupichin E.A. Journal of Instrument Engineering, 2015, no. 9(58), pp. 707–712. (in Russ.)
  11. Denisenko V.V. Automation in Industry, 2007, no. 6, pp. 45–50. (in Russ.)
  12. Yakovis L.M. Automation in Industry, 2013, no. 1, pp. 20–26. (in Russ.)
  13. Fokin A.L., Kharazov V.G. Avtomatizatsiya i sovremennyye tekhnologii, 2002, no. 5, pp. 13–17. (in Russ.)
  14. Fokin A.L. Izvestiya Sankt-Peterburgskogo Gosudarstvennogo Tekhnologicheskogo Instituta (Tekhni-cheskogo Universiteta), 2014, no. 27, pp. 101–106. (in Russ.)
  15. Remizova O.V., Syrokvashin V.V., Fokin A.L. Journal of Instrument Engineering, 2015, no. 12(58), pp. 12–18. (in Russ.)
  16. Yakovis L.M. Automation in Industry, 2007, no. 6, pp. 51–56. (in Russ.)
  17. Polyak B.T., Tsypkin Ya.Z. Automation and Remote Control, 1992, no. 7(53), pp. 972–977.
  18. Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya (The Theory of Auto-matic Control Systems), Moscow, 1972, 768 p. (in Russ.)