ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

7
Issue
vol 63 / July, 2020
Article

DOI 10.17586/0021-3454-2019-62-8-693-701

UDC 629.7.05.67:629.7.054.44

STATIC ACCURACY ANALYSIS OF AIR SIGNAL SYSTEM OF AIRCRAFT WITH A FIXED NON-PROTRUDING RECEIVER OF INCOMING AIR FLOW

A. V. Nikitin
A. N. Tupolev Kazan National Research Technical University, Department of Devices and Information-Measuring Systems; Senior Lecturer


V. V. Soldatkin
A. N. Tupolev Kazan National Research Technical University, Department of Devices and InformationMeasuring Systems; Associate Professor


V. M. Soldatkin
A.N. Tupolev Kazan National Research Technical University-КAI, Department of Devices and Information-Measurement Systems; Professor


Read the full article 

Abstract. The necessity of creating a system of air signals of an airplane with one fixed non-protruding re-ceiver of incoming air flow is substantiated. Features of the airborne signal system of an airplane with a fixed non-protruding receiver of the incoming air flow, which are based on an ion-tagged aerodynamic angle sensor and true airspeed with a static pressure receiver hole on its streamlined surface, are revealed. Algorithms for processing information in the measuring channels of the system are presented, methodical static errors of the system for measuring air signals of an aircraft with a fixed non-protruding receiver of the air flow and technologies for their reduction are evaluated, the causes of such errors are analyzed.
Keywords: air signals, fixed non-protruding flow receiver, ion-tagged sensor, receiver hole, static pressure, algorithms, methodical static errors

References:
  1. Nikitin A.V., Soldatkin V.V, Soldatkin V.M. Mehatronika, Avtomatizacia, Upravlenie (Mechatronics, Au-tomation, Control), 2016, no. 8(17), pp. 560–566. DOI:10.17587/mau.17.560-566 (in Russ.)
  2. Derevyankin V.P. Russian Aeronautics, 2004, no. 3, pp. 54–57. (in Russ.)
  3. Soldatkin V.M. Metody i sredstva izmereniya aerodinamicheskikh uglov (Methods and Means of Measuring Aerodynamic Angles), Kazan', 2001, 448 р. (in Russ.)
  4. Kluyev T.I., Makarov N.N., Soldatkin V.M., Efimov I.P. Izmeriteli aerodinamicheskikh parametrov leta-tel'nykh apparatov (Meters of Aerodynamic Parameters of Aircraft), Ul'yanovsk, 2005, 509 р. (in Russ.)
  5. Lysenko N.M., ed., Prakticheskaya aerodinamika manevrennykh samoletov (Practical Aerodynamics of Maneuverable Aircraft), Moscow, 1997, 439 р. (in Russ.)
  6. Nikitin A.V., Soldatkin V.V, Soldatkin V.M., Ariskin E.O. Mehatronika, Avtomatizacia, Upravlenie (Me-chatronics, Automation, Control), 2018, no. 11(19), pp. 744–752. DOI:10.17587/mau19.744-752 (in Russ.)
  7. Patent 2445634 RU, G01P 5/14, Metochnyy datchik aerodinamicheskogo ugla i vozdushnoy skorosti (Accurate Aerodynamic Angle and Airspeed Sensor), F.A. Ganeyev, V.M. Soldatkin, I.R. Urazbakhtin, N.N. Makarov, V.I. Kozhevnikov, Priority 05.06.2010, № 2010118253/28, Published 20.03.2012, Bulletin 8. (in Russ.)
  8. Ganeev F.A., Soldatkin V.M. Russian Aeronautics, 2010, no. 3(53), pp. 312–319. DOI: 10.3103/S1068799810030116
  9. Soldatkin V.M., Soldatkina E.S. Russian Aeronautics, 2012, no. 4(55), pp. 402–407. DOI: 10.3103/S1068799812040149
  10. Patent 2580208 RU, G01Р 5/00, G01С 1/12, Metochnyy datchik aerodinamicheskogo ugla i vozdushnoy skorosti (Accurate Aerodynamic Angle and Airspeed Sensor), V.M. Soldatkin, F.A. Ganeyev, E.S. Soldatkina, N.N. Makarov, V.P. Derevyankin, D.L. Krylov, Priority 10.12.2014, № 2014150131/28, Published 10.04.2016, Bulletin 10. (in Russ.)
  11. Kharin E.G., Kopylov V.A. Tekhnologii letnykh ispytaniy bortovogo oborudovaniya letatel'nykh apparatov s primeneniyem kompleksa bortovykh trayektornykh izmereniy (Technologies for Flight Tests of Onboard Equipment of Aircraft Using a Complex of On-Board Path Measurements), Moscow, 2012, 360 р. (in Russ.)