ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2019-62-9-782-790

UDC 681.511.26; 517.935

ROBUST OUTPUT CONTROL FOR NONLINEAR MULTI-CHANNEL SYSTEMS

D. E. Konovalov
ITMO University, Saint Petersburg, 197101, Russian Federation; student


S. A. Vrazhevsky
Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences (IPME RAS), Saint Petersburg, 199178, Russian Federation; ITMO University, Saint Petersburg, 197101, Russian Federation; engineer


I. B. Furtat
ITMO University, Saint Petersburg, 197101, Russian Federation; Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences, Saint Petersburg, 199178, Russian Federation; Full Professor; Head of Department, Chief Researcher


A. S. Kremlev
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate professor


Read the full article 

Abstract. The problem of robust output control for multiple-input multiple-output linear system under unknown mismatched bounded disturbances and parametric uncertainties is considered. The proposed control algorithm is based on a combination of two techniques: the backstepping method and the auxiliary loop method. An iterative procedure is described for synthesis of a decentralized control system with a specialized dynamical subsystem (auxiliary loop) included on each step to provide estimation and compensation of unknown inconsistent perturbations without the use of a strong feedback. Results of practical approbation of the developed algorithm using a real laboratory platform “Twin Rotor MIMO System” are presented.
Keywords: backstepping, auxiliary loop method, output control, multiple-input multiple-output systems, robust control, disturbance observer, mismatched disturbances

References:
  1. Aranovskiy S., Bobtsov A., Kremlev A., Nikolaev N., Slita O. IFAC Proceedings Volumes, 2007, no. 13(40), pp. 167–172.
  2. Aparicio A., Castaños F., Fridman L. Intern. Journal of Robust and Nonlinear Control, 2016, no. 18(26), pp. 4056–4071.
  3. Yu P., Shtessel Y., Edwards C. Intern. Journal of Adaptive Control and Signal Processing, 2016, no. 8–10(30), pp. 1099–1117.
  4. Chang J.L. Intern. Journal of Control, Automation and Systems, 2016, no. 2(14), pp. 579–586.
  5. Li S. Yang J., Chen W.H., Chen X. Disturbance observer-based control: methods and applications, CRC press, 2016.
  6. Gao Z. American Control Conference, IEEE, 2006, pp. 7.
  7. Wang X., Li S., Lam J. Automatica, 2016, vol. 74, рр. 30–37.
  8. Kokotovic P.V. IEEE Control Systems Magazine, 1992, no. 3(12), pp. 7–17.
  9. Fradkov A.L., Miroshnik I.V., Nikiforov V.O. Nonlinear and adaptive control of complex systems, Springer Science & Business Media, 2013, vol. 491.
  10. Krstic M., Kanellakopoulos I., Kokotovic P.V. Nonlinear and adaptive control design, New York, Wiley, 1995, vol. 222, рр. 490–491.
  11. Nikiforov V.O. European Control Conference (ECC), IEEE, 1997, рр. 1213–1218.
  12. Queiroz K., Dias S., Araujo A. Journal of the Franklin Institute, 2014, no. 4(351), pp. 2089–2106.
  13. Zhou J., Wen C., Wang W. Automatica, 2009, no. 6(45), pp. 1415–1422.
  14. Furtat I., Furtat E., Tupichin E.A. IFAC-PapersOnLine, 2015, no. 11(48), pp. 1056–1061.
  15. Sun H., Li S., Yang J., Zheng W.X. Intern. Journal of Robust and Nonlinear Control, 2015, no. 15(25), pp. 2631–2645.
  16. Tsykunov A.M. Automation and Remote Control, 2007, no. 7(68), pp. 1213–1224.
  17. Furtat I.B., Vrazevsky S.A., Kremlev A.S., Gushchin P.A. 9th Intern. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), IEEE, 2017, рр. 61–66.
  18. Vrazevsky S.A., Chugina J.V., Furtat I.B., Kremlev A.S. 9th Intern. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), IEEE, 2017, рр. 55–60.