ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)

vol 64 / January, 2021

DOI 10.17586/0021-3454-2019-62-10-886-892

UDC 681.51


S. V. Bystrov
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate professor

V. V. Grigoriev
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor

O. K. Mansurova
University of Mines, Department of Technological Process Automation and Production; Associate Professor

V. A. Petrov
ITMO University, Department of Computer Science and Control Systems; Post-Graduate Student

I. M. Pershin
North Caucasus Federal University, Pyatigorsk Institute; Department of Control in Technical and Biomedical Systems; Professor, Head of the Department

Read the full article 

Abstract. The possibility of using recognized parametric relations between qualitative characteristics of dy-namic processes in analyzed system and its fundamental features (types of stability and instability) for development of effective techniques of the system function analysis in various conditions and for design of control devices – regulators providing the required performance quality is considered. For continuous and discrete dynamic systems, a unified approach to the analysis of their functioning properties is devel-oped. The analysis includes a procedure for constructing ellipsoidal estimates of the areas of dynamic processes behavior parameters and estimating permissible parameter changes under the conditions of qualitative exponential stability.
Keywords: qualitative stability, Lyapunov function, sufficient conditions, performance estimates

  1. Grigor'yev V.V., Drozdov V.N., Lavrent'yev V.V., Ushakov A.V. Sintez diskretnykh regulyatorov pri pomoshchi EVM (The synthesis of discrete controllers using computers), Leningrad, 1983, 235 р. (in Russ.)
  2. Furasov V.D. Ustoychivost' dvizheniya, otsenki i stabilizatsiya (Stability, assessment and stabilization), Moscow, 1977, 247 р. (in Russ.)
  3. Boykov V.I., Grigor'yev V.V., Mansurova O.K., Mikhaylov S.V. Journal of Instrument Engineering, 1998, no. 7(41). (in Russ.)
  4. Grigor'yev V.V. Journal of Instrument Engineering, 2000, no. 1-2(43). (in Russ.)
  5. Grigoriev V.V., Mansurova O.K. Preprints of 5th IFAK Symposium on Nonlinear Control Systems (NOLCOS’01), St. Petersburg, 2001.
  6. Nair G.N., Evans R.I. Automatica, 2003, vol. 39, рр. 585–593.
  7. Bystrov S.V., Grigor'yev V.V. Universal Journal of Control and Automation, 2013, no. 1(1), pp. 15–18, DOI 10.13189.
  8. Bystrov S.V., Grigor'yev V.V., Rabysh E.Yu., Mansurova O.K. Mekhatronika, Avtomatizatsiya, Uprav-leniе, 2012, no. 9, pp. 32–36. (in Russ.)
  9. Grigor'yev V.V., Bystrov S.V., Naumova A.K., Rabysh E.Yu., Cherevko N.A. Journal of Instrument Engi-neering, 2011, no. 6(54), pp. 24-30. (in Russ.)
  10. Bobtsov A.A., Bystrov S.V., Grigor'yev V.V., Dudrov P.V., Kozis D.V., Kostina O.V., Mansurova O.K. Mekhatronika, Avtomatizatsiya, Upravlenie, 2006, no. 10, pp. 2–5. (in Russ.)
  11. Bushuyev A.B., Grigor'yev V.V., Petrov V.A. Matematicheskiye metody v tekhnike i tekhnologiyakh – MMTT (Mathematical Methods in Engineering and Technology – MMTT), 2018, vol. 2, pp. 73–77. (in Russ.)
  12. Bystrov S.V., Grigor'yev V.V., Pershin I.M., Mansurova O.K. Meždunarodnyj naučno-issledovatel’skij žurnal (International Research Journal), 2017, no. 2-3(56), pp. 97–100 (in Russ.)
  13. Bushuyev A.B., Grigor'yev V.V., Petrov V.A. Mekhatronika, Avtomatizatsiya, Upravleniе, 2019, no. 2(20), pp. 67–71 (in Russ.)
  14. Bystrov S.V., Grigor'yev V.V., Mansurova O.K., Pershin I.M. Journal of Instrument Engineering, 2017, no. 5(60), pp. 398–403 (in Russ.)