ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

7
Issue
vol 63 / July, 2020
Article

DOI 10.17586/0021-3454-2020-63-1-5-17

UDC 681.518.5:004.052.32

ERROR DETECTION BY MODIFIED CODES WITH SUMMATION OF SINGLE DIGITS IN THE ARBITRARY MODULUS RESIDUE RING

D. V. Ephanov
PSTU; Department of Automation and Telemechanics on the Railways


A. O. Filippochkina
Russian University of Transport, Department of Automation, Remote Control and Communication on Railway Transport ;


M. V. Ivanova
Russian University of Transport, Department of Automation, Remote Control and Communication on Railway Transport ;


Read the full article 

Abstract. Methods of creation of codes with summation focused on detection of errors in data vectors, are investigated. The ways to modify classic and modular sum codes are analyzed. It is noted that in some cases of a modified sum code building, it may be effective to choose the account module in the form of an arbitrary natural number M>2. An overview of the sum codes properties is presented; several previ-ously unknown features of modified sum codes with arbitrary account modules are established. The consideration concerns not only the features of detecting errors of different multiplicity, but also of differ-ent types (monotonous, symmetric and asymmetric). Detailed analysis is given to modified sum codes with arbitrary account modules having the best error detection characteristics in the code family with a specific module. The advantages and disadvantages of the code class in question are discusses. Pro-spects for cods application in solving the problems of synthesis of controllable automation devices and systems are formulated.
Keywords: error detection codes, error detection in data vectors, one-bits sum code, codes with arbitrary account modules, undetectable error, view and multiplicity of undetectable error

References:
  1. Fujiwara E. Code Design for Dependable Systems: Theory and Practical Applications, John Wiley & Sons, 2006, 720 p.
  2. Göessel M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Concurrent Checking: Edi-tion 1, Dordrecht, Springer Science+Business Media B.V., 2008, 184 p.
  3. Drozd A.V., Kharchenko V.S., Antoshchuk S.G., Drozd Yu.V., Drozd M.A., Sulima Yu.Yu. Rabocheye diagnostirovaniye bezopasnykh informatsionno-upravlyayushchikh sistem (Working Diagnostics of Safe Information and Control Systems), Khar’kov, 2012, 614 р. (in Russ.)
  4. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Kody Khemminga v sistemakh funktsional'nogo kontrolya logicheskikh ustroystv (Hamming Codes in Logic Devices Functional Control Systems), St. Petersburg, 2018, 151 р. (in Russ.)
  5. Sogomonyan E.S., Slabakov E.V. Samoproveryaemye ustroystva i otkazoustoychivye sistemy (The Self-Checked Devices and Failure-Safe Systems), Moscow, 1989, 208 р. (in Russ.)
  6. Sapozhnikov V.V., Sapozhnikov Vl.V., Khristov Kh.A., Gavzov D.V. Metody postroyeniya bezopasnykh mikroelektronnykh sistem zheleznodorozhnoy avtomatiki (Methods of Construction of Safe Microelec-tronic Systems of Railway Automation), Moscow, 1995, 272 р. (in Russ.)
  7. Nicolaidis M., Zorian Y. Journal of Electronic Testing: Theory and Applications, 1998, no. 12, pp. 7–20. DOI: 10.1023/A:1008244815697.
  8. MacWilliams F.J., Sloane N.J.A. The Theory of Error-Correcting Codes, Amsterdam, North-Holland, 1977, 785 p.
  9. Stempkovskiy A., Telpukhov D., Gurov S., Zhukova T., Demeneva A. Proceedings of IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 29 January–1 February 2018, Moscow, Russia, pp. 1430–1433, DOI: 10.1109/EIConRus.2018.8317365.
  10. Piestrak S.J. Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wrocław, Ofi-cyna Wydawnicza Politechniki Wrocłavskiej, 1995, 111 p.
  11. Mekhov V.B., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 2008, no. 8(69), pp. 1411–1422.
  12. Efanov D., Sapozhnikov V., Sapozhnikov Vl. Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS`2017), Novi Sad, Serbia, September 29–October 2, 2017, pp. 365–371, DOI: 10.1109/EWDTS.2017.8110126.
  13. Bose B., Lin D.J. IEEE Transaction on Computers, 1985, vol. C-34, November, pp. 1026–1032.
  14. Das D., Touba N.A. Journal of Electronic Testing: Theory and Applications, 1999, no. 1-2(15), pp. 145–155, DOI: 10.1023/A:1008344603814.
  15. Sogomonyan E.S. Automation and Remote Control, 1974, no. 2, pp. 121–133 (in Russ.)
  16. Slabakov E.V. Automation and Remote Control, 1979, no. 10, pp. 133–141. (in Russ.)
  17. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V., Kotenko A.G. Trudy SPIIRAN (SPIIRAS Proceedings), 2017, no. 1, pp. 137–164, DOI: 10.15622/SP.50.6. (in Russ.)
  18. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V., Cherepanova M.R. Electronic Modeling, 2016, no. 2(38), pp. 27–48. (in Russ.)
  19. Efanov D.V., Sapozhnikov V.V. Automation and Remote Control, 2015, no. 10(76), pp. 1834–1848.
  20. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V., Cherepanova M.R. Electronic Modeling, 2016, no. 3(38), pp. 47–61. (in Russ.)
  21. Blyudov A.A., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 2012, no. 1(73), pp. 153–160. (in Russ.)
  22. Blyudov A.A., Efanov D.V., Sapozhnikov V.V. Automation and Remote Control, 2013, no. 6(74), pp. 1020–1028.
  23. Blyudov A.A., Efanov D.V., Sapozhnikov V.V., Sapozhnikov Vl.V. Automation and Remote Control, 2014, no. 8(75), pp. 1460–1470.
  24. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Automation on transport, 2018, no. 1(4), pp. 106–130. (in Russ.)
  25. Busaba F.Y., Lala P.K. Journal of Electronic Testing: Theory and Applications, 1994, no. 1(5), pp. 19–28, DOI: 10.1007/BF00971960.
  26. Matrosova A.Yu., Levin I., Ostanin S.A. VLSI Design, 2000, no. 1(11), pp. 47–58.
  27. Efanov D.V., Sapozhnikov V.V. Automation and Remote Control, 2018, no. 9(79), pp. 1609–1620.
  28. Sapozhnikov V.V., Sapozhnikov Vl.V., Efanov D.V. Journal of Instrument Engineering, 2015, no. 5(58), pp. 333–343, DOI: 10.17586/0021-3454-2015-58-5-333-343. (in Russ.)