ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2020-63-10-946-949

UDC 621.83; 621.941

MAIN WAYS FOR INCREASING THE FLEXIBILITY OF AUTOMATIC AND ROBOTIC ASSEMBLY LINES

V. M. Medunetskiy
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


V. V. Nikolaev
"Control Systems and Instruments", JSC, Saint Petersburg, 194021, Russian Federation; Chief Design Manager


Read the full article 

Abstract. Several issues of increasing the flexibility of technological automated and robotic assembly lines of small-sized products are considered. The features of robotic assembly lines are considered, methods of their organization and modification of mechanical components of technological equipment are proposed.
Keywords: production technological systems, technological flexibility, automated and robotic assembly lines, technological modules, grippers of robotic manipulators

References:
  1. Kozyrev Yu.G. Gibkiye proizvodstvennyye sistemy. Spravochnik (Flexible Manufacturing Systems. Reference Book), Moscow, 2017, 364 р. (in Russ.)
  2. Voronin A.B., Grechukhin A.I., Kalashnikov A.C. et al. Mekhanizatsiya i avtomatizatsiya sborki v mashinostroyenii (Mechanization and Automation of Assembly in Mechanical Engineering), Moscow, 1985, 272 р. (in Russ.)
  3. Mitrofanov S.P., Kulikov D.D., Milyayev O.N., Padun B.S. Tekhnologicheskaya podgotovka gibkikh proizvodstvennykh sistem (Technological Preparation of Flexible Production Systems), Leningrad, 1987, 352 р. (in Russ.)
  4. Timofeyev A.V. Adaptivnyye robototekhnicheskiye kompleksy (Adaptive Robotic Systems), Leningrad, 1988, 332 р. (in Russ.)
  5. Bondareva N.N MIR (Modernization. Innovation. Research), 2016, no. 3(7), pp. 49–57. DOI: 10.18184/2079-4665.2016.7.3.49.57.
  6. Executive Summary World Robotics 2016 Industrial Robots, https://ifr.org/img/uploads/Executive_Summary_WR_Industrial_Robots_20161.pdf.
  7. Medunetskiy V.M., Nikolaev V.V. Journal of Physics: Conference Series, 2019, vol. 1210, pp. 012093.
  8. Medunetskiy V.M., Nikolaev V.V. Journal of Instrument Engineering, 2018, no. 4(61), pp. 377–379. DOI 10.17586/0021-3454-2018-61-4-377-379. (in Russ.)
  9. Kolpashnikov S.N., Chelpanov I.B. Promyshlennyye roboty dlya gibkikh avtomatizirovannykh proizvodstv (Industrial Robots for Flexible Automated Manufacturing), Collection of scientific papers, Kuybyshev, 1985. (in Russ.)
  10. Medunetskiy V.M., Padun B.S., Nikolaev V.V. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, no. 6(17), pp. 1123–1132. DOI: 10.17586/2226- 1494-2017-17-6-1123-1132. (in Russ.)
  11. Nikolaev V.V Povysheniye gibkosti robotizirovannykh sborochnykh liniy mnogonomenklaturnogo proizvodstva opticheskikh priborov (Increase the Flexibility of Robotic Assembly Lines for Multi-Product Optical Manufacturing), Candidate’s thesis, St. Petersburg, 2018, 123 р. (in Russ.)