ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-4-320-334

UDC 620.179.1; 620.192

NUMERICAL AND EXPERIMENTAL MODELING OF THE ACOUSTIC-ELECTRICAL METHOD FOR NON-DESTRUCTIVE TESTING OF SOLID-STATE DIELECTRICS

A. A. Bespalko
Tomsk Polytechnic University, Research Laboratory for Electronics, Semiconductors and Dielectrics; Leading Researcher


D. D. Dann
Tomsk Polytechnic University, Research Laboratory for Electronics, Semiconductors and Dielectrics; Researcher


P. I. Fedotov
Tomsk Polytechnic University, Research Laboratory for Electronics, Semiconductors and Dielectrics; Engineer


S. A. Dmitrieva
Tomsk Polytechnic University, Research Laboratory for Electronics, Semiconductors and Dielectrics ;


L. Junhua
Tomsk Polytechnic University, Research Laboratory for Electronics, Semiconductors and Dielectrics;


Read the full article 

Abstract. Abstract. To develop a complex acoustoelectric method for non-destructive testing, mechanoelectric and acoustoelectric transformations are numerically and experimentally studied on the example of magnetite ore samples and model defective dielectric structures based on cement-sand mixtures. Results of calculations of stress concentration at cracks of different sizes during an external deterministic acoustic pulse propagation along the sample are presented. Results of experimental studies of electromagnetic emission of samples of magnetite ore containing calcite and magnetite under uniaxial compression to fracture are demonstrated. The possibility of reliable determination the appearance and development of destructive zones in dielectric materials from the spectra of electromagnetic responses during acoustoelectric transformations is revealed. Results concerning changes in parameters of electromagnetic responses of a cement-sand mixture with defects under external pulsed acoustic action in the process of stepwise loading by compression and shear are presented. As inclusions (defects), magnetite ore and fluoroplastic are used, which have, respectively, a higher and lower acoustic impedance than the model sample material. The effect of duration of external pulsed acoustic excitation on parameters of electromagnetic responses during stepwise loading of model samples is considered.
Keywords: mechanoelectric and acoustoelectric transformations, rocks, dielectrics, compression and shear loads, acoustic impact, fracture

References:
  1. Klyuev V.V. Nerazrushayushchiy kontrol' (Unbrakable Control), Handbook in 8 volumes, Moscow, 2008. (in Russ.)
  2. Misra A., Gosh S. Applied physics, 1980, vol. 23, рр. 387–390, DOI:10.1007/BF00903221.
  3. Khatiashvili N.G., Perelman M.E. Soviet Physics. Doklady, 1982, no. 4(263), pp. 839–842, http://mi.mathnet.ru/dan45200. (in Russ.)
  4. Bespal'ko A.A., Gol'd R.M., Yavorovich L.V., Datsko D.I. Journal of Mining Science, 2002, vol. 38, рр. 124–128, https://doi.org/10.1023/A:1021103219461.
  5. Koktavy Р. Measurement Science and Technology, 2009, no. 1(20), pp. 15704, DOI: 10.1088/0957-0233/20/1/015704.
  6. Fursa T.V., Dann D.D., Petrov M.V., Lykov A.E. Journal of Nondestructive Evaluation, 2017, no. 2(36), pp. 30, DOI: 10.1007/s10921-017-0411-y.
  7. Ogawa T., Oike K., Miura Т. Journal of Geophysical Research, 1985, vol. 90, рр. 6245–6249, DOI:10.1029/JD090ID04P06245.
  8. Ivanov V.V., Egorov P.V., Kolpakova P.A. and Pimonov A.G. Journal of Mining Science, 1988, no. 5(24), pp. 406–412, DOI:10.1007/BF02498591.
  9. Yamada I., Masuda K., Mizutani H. Physics of the Earth and Planetary Interiors, 1989, no. 1-2(57), pp. 157–168, DOI:10.1016/0031-9201(89)90225-2.
  10. O’Keefe S.G., Thiel D.V. Physics of the Earth and Planetary Interiors, 1995, no. 11(89), pp. 127–135, DOI:10.1016/0031-9201(94)02994-M.
  11. Bespal'ko A.A., Yavorovich L.V., Fedotov P.I. Russian Journal of Nondestructive Testing, 2011, no. 10(47), pp. 41–49, DOI: 10.1134/S1061830911100068.
  12. Molotsky M.I., Malyugin V.B. Soviet Physics, Solid State, 1983, no. 10(25), pp. 2892–2895. (in Russ.)
  13. Fursa T.V., Utsyn G.E., Petrov M., Dann D.D., Sokolovskiy A.N. Research in Nondestructive Evaluation, 2019, no. 6(30), pp. 317–333, DOI:10.1080/09349847.2018.1522404.
  14. Bespal’ko A.A., Gold R.M., Yavorovich L.V. Physical mesomechanics, 2004, no. 5(7), pp. 95–99, DOI: 10.1023/A:1021103219461.
  15. Bespal'ko А., Surzhikov А., Fedotov Р., Pomishin Е., Stary О. Materials Science Forum, 2019, vol. 970, рр. 153–166, https://doi.org/10.4028/www.scientific.net/MSF.970.153.
  16. Nitsan U. Geophysical Research Letters, 1977, no. 8(4), pp. 333–337, DOI:10.1029/GL004I008P00333.
  17. Bolotin Yu.I. Journal of Mining Science, 1993, no. 1(29), pp. 36–38, DOI:10.1007/BF00734329.
  18. Lacidogna G., Carpinteri А., Manuello A., Durin G., Schiavi A., Niccolini G., Agosto A. Strain, 2010, vol. 47, рр. 144–152, DOI:10.1111/j.1475-1305.2010.00750.x.
  19. Bespal'ko А.А., Surzhikova A.P., Dann D.D., Utsin G.Е., Petrov M.V. and Pomishin Е.K. Russian Journal of Nondestructive Testing, 2021, no. 2(57), pp. 85–95, DOI:10.1134/S1061830921020029.
  20. Bespal'ko А.А., Isaev Y.N., Dann D.D., Pomishin Е.K., Fedotov P.I., Petrov M.V. and Utsin G.Е. Journal of Nondestructive Evaluation, 2020, no. 4(39), pp. 1–14, DOI:10.1134/S1062739116020418.
  21. Abramchuk M.V., Medunetsky V.M., Perepelkina S.Yu., Surikov D.G. Journal of Instrument Engineering, 2021, no. 11(64), pp. 949–954, DOI: 10.17586/0021-3454-2021-64-11-949-954. (in Russ.)
  22. Dortman N.B., ed., Geoinformatsionnoye oborudovaniye i osnastka: Spravochnik. V trekh knigakh. Kniga pervaya. Gornyye porody i mineraly (Petrophysics. Geoinformation Equipment and Equipment: a Handbook. In three books. Book one. Rocks and Minerals), Moscow, 1992, 391 р. (in Russ.)
  23. X-ray flat panel detector PerkinElmer XRD 0822, www.perkinelmer.com.
  24. Hoffman J.D. Numerical methods for engineers and scientists, NY, Marcel Dekker. Inc., 2001, 840 р.
  25. Ziman J.M. Principles of the Theory of Solids, Cambridge University Press, London, 1972, 435 р.
  26. Davydov A.S. Teoriya tverdogo tela (Solid State Theory), Moscow, 1976, 640 р. (in Russ.)
  27. Hairer E., Wanner G. Solving ordinary differential equations II: Stiff and differential-algebraic problems, Berlin, NY, Springer-Verlag, 1996, DOI: 10.1007/978-3-662-09947-6.
  28. Gorshkov A.G., Starovoitov E.I., Tartakovsky D.V. Teoriya uprugosti i plastichnosti (Theory of Elasticity and Plasticity), Moscow, 2002, 416 р. (in Russ.)
  29. Molotnikov V., Molotnikova A. Theory of Elasticity and Plasticity/A Textbook of Solid Body Mechanics, Springer Intern. Publishing, 2021, 444 р.
  30. Regel V.R., Slutsker A.I., Tomashevsky E.E. Kineticheskaya priroda prochnosti tverdykh tel (Kinetic Nature of the Strength of Solids), Moscow, 1974, 560 р. (in Russ.)