ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2023-66-10-845-851

UDC 535.321.9

MEASURING THE BIREFRINGENCE VALUE OF A PANDA FIBER USING A SAGNAC INTERFEROMETER

K. A. Ovchinnikov
Perm National Research Polytechnic University; Perm Research and Production Instrument-Making Company; Head of Laboratory


V. V. Krishtop
Perm Research and Production Instrument Making Company, Research Institute of Radio Photonics and Optoelectronics; Chief Researcher; professor


D. G. Gilev
Perm Research and Production Instrument-Making Company; Perm National Research Polytechnic University ; Researcher


V. A. Maksimenko
Perm Scientific-Industrial Instrument Making Company, Research Institute of Radio hotonics and Optoelectronics, Perm National Research Polytechnic University, Department of General Physics ; Associate Professor


A. V. Perminov
Perm National Research Polytechnic University, Department of General Physics ; Head of the Department


Read the full article 
Reference for citation: Ovchinnikov К. А., Krishtop V. V., Gilev D. G., Maksimenko V. А., Perminov А. V. Measuring the birefringence value of a PANDA fiber using a Sagnac interferometer. Journal of Instrument Engineering. 2023. Vol. 66, N 10. P. 845—851 (in Russian). DOI: 10.17586/0021-3454-2023-66-10-845-851.

Abstract. A technique for measuring the birefringence of optical fibers using a Sagnac interferometer and a radiation source with a tunable wavelength is presented. Physical principles that form the basis the presented methodology are considered. To eliminate the influence of the nonlinearity of the radiation source wavelength tuning rate on the measurement accuracy, an auxiliary interferometer with known parameters is used. The obtained values of measured fiber birefringence coincide with the passport values, which confirms the proposed measurement technique effectiveness.
Keywords: birefringence, polarization maintaining fibers, PANDA fiber, Sagnac interferometer, tunable laser

Acknowledgement: research was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation (project No. FSNM-2023-0005).

References:
  1. Fujii Y. and Sanos K. Electron. Comm. Jpn., pt. I, 1980, vol. 63, рр. 87–93, https://doi.org/10.1002/ ecja.4400630812.
  2. Kumar A., Varshney R.K., Thyagarajan K. Electronics Letters, 1984, vol. 20, рр. 112.
  3. Noda J., Okamoto K. and Sasaki Y. Journal of Lightwave Technology, 1986, no. 8(4), pp. 1071–1089, DOI: 10.1109/JLT.1986.1074847.
  4. Medeiros A., Barcelos S., Rigon E., Rando R., Seminario J., Santos M., and Oliveira R. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Optica Publishing Group, 2006, paper NTuC4.
  5. Ten S., Edwards M. White Paper, 2006, vol. WP5051.
  6. Gilev D.G., Valiushina P.M., Maksimenko V.A., and Krishtop V.V. Opt. Continuum, 2022, no. 1(3), pp. 487–493.
  7. Drozdov I.R., Ovchinnikov K.A., Boychuk E.S., & Krishtop V.V. International Conference Laser Optics (ICLO), 2022, pp. 1-1.
  8. Gilev D.G. Applied photonics, 2023, no. 1(10), pp. 116–130. (in Russ.)
  9. Denisov I.V., Lisovsky N.V. Applied photonics, 2023, no. 1(10), pp. 131–148. (in Russ.)
  10. Krauzin P.V., Trefilov I.A., Sagirova A.R., Ogleznev A.A., Kondrashov A.N., Yurina A.D., Melnikov R.M. Applied photonics, 2023, no. 2(10), pp. 68–87. (in Russ.)
  11. Kumar A., Ghatak A. Polarization of light with applications in optical fibers, SPIE, 2011, 246 р., ISBN: 9780819482150, https://doi.org/10.1117/3.861761.
  12. Rogers A. Polarization in Optical Fibers, Artech house, 2008, 250 р., ISBN: 9781580535342.
  13. Lefevre H. Fiber-optic gyroscopes, Artech house, 2022, 416 р.
  14. Burdin V.А. T-Comm: Telecommunications and transport, 2009, no. S1, pp. 175–177. (in Russ.)
  15. Morshnev S.K., Gubin V.P., Starostin N.I., Prshiyalkovsky Ya.V., Sazonov A.I. Photonics Russia, 2018, no. 6(12), pp. 616–633. (in Russ.)
  16. Malykin G.B. Physics-Uspekhi (Advances in Physical Sciences), 2000, no. 12(43), pp. 1229–1252.
  17. Song J. Optical frequency domain reflectometry: Sensing range extension and enhanced temperature sensitivity: M.Sc. Thesis, Université d'Ottawa, 2014, 113 р.
  18. Song Jia, Li Wenhai, Lu Ping, Xu Yanping, Chen Liang, & Bao Xiaoyi. Photonics Journal, 2014, vol. 6, рр. 1–8, DOI: 10.1109/JPHOT.2014.2320742.
  19. Gilev D.G., Ovchinnikov K.A., Krishtop V.V. et al. Bull. Russ. Acad. Sci. Phys., 2022, vol. 86, suppl. 1, рр. S75–S80, https://doi.org/10.3103/S1062873822700423.
  20. Ovchinnikov K.A., Gilev D.G., Krishtop V.V. et al. Bull. Russ. Acad. Sci. Phys., 2022, vol. 86, suppl. 1, рр. S156–S162, https://doi.org/10.3103/S1062873822700599.