DOI 10.17586/0021-3454-2023-66-10-845-851
УДК 535.321.9
ИЗМЕРЕНИЕ ВЕЛИЧИНЫ ДВУЛУЧЕПРЕЛОМЛЕНИЯ ВОЛОКНА ТИПА PANDA С ПОМОЩЬЮ ИНТЕРФЕРОМЕТРА САНЬЯКА
Пермский национальный исследовательский политехнический университет; Пермская научно-производственная приборостроительная компания; начальник лаборатории
Криштоп В. В.
Пермская научно-производственная приборостроительная компания, научно-исследовательский институт радиофотоники и оптоэлектроники; главный научный сотрудник; профессор
Гилев Д. Г.
Пермская научно-производственная приборостроительная компания, начальник бюро; Пермский национальный исследовательский политехнический университет; научный сотрудник
Максименко В. А.
Пермская научно-производственная приборостроительная компания, Научно-исследовательский институт радиофотоники и оптоэлектроники, Пермский национальный исследовательский политехнический университет, кафедра общей физики; доцент
Перминов А. В.
Пермский национальный исследовательский политехнический университет, кафедра общей физики ; заведующий кафедрой
Читать статью полностью
Ссылка для цитирования : Овчинников К. А., Криштоп В. В., Гилев Д. Г., Максименко В. А., Перминов А. В. Измерение величины двулучепреломления волокна типа Panda с помощью интерферометра Саньяка // Изв. вузов. Приборостроение. 2023. Т. 66, № 10. С. 845—851. DOI: 10.17586/0021-3454-2023-66-10-845-851.
Аннотация. Представлена методика измерения величины двулучепреломления оптических волокон с применением интерферометра Саньяка и источника излучения c перестраиваемой длиной волны. Рассмотрены физические принципы, лежащие в основе представленной методики. Для устранения влияния нелинейности скорости перестройки длины волны источника излучения на точность измерений применен вспомогательный интерферометр с известными параметрами. Полученные значения двулучепреломления волокна совпадают с паспортными, что подтверждает эффективность предложенной методики измерения.
Аннотация. Представлена методика измерения величины двулучепреломления оптических волокон с применением интерферометра Саньяка и источника излучения c перестраиваемой длиной волны. Рассмотрены физические принципы, лежащие в основе представленной методики. Для устранения влияния нелинейности скорости перестройки длины волны источника излучения на точность измерений применен вспомогательный интерферометр с известными параметрами. Полученные значения двулучепреломления волокна совпадают с паспортными, что подтверждает эффективность предложенной методики измерения.
Ключевые слова: двулучепреломление, волокна с сохранением поляризации, волокно Panda, интерферометр Саньяка, перестраиваемый лазер
Благодарность: исследования выполнены при поддержке Министерства науки и высшего образования Российской Федерации (проект № FSNM-2023-0005).
Список литературы:
Благодарность: исследования выполнены при поддержке Министерства науки и высшего образования Российской Федерации (проект № FSNM-2023-0005).
Список литературы:
- Fujii Y. and Sanos K. Polarization transmission characteristics of optical fibers with elliptical cross section // Electron. Comm. Jpn. 1980. Vol. 63. Pt. I. P. 87—93. https://doi.org/10.1002/ecja.4400630812.
- Kumar A., Varshney R. K., Thyagarajan K. Birefringence calculations in elliptical-core optical fibres // Electronics Letters. 1984. Vol. 20. Р. 112.
- Noda J., Okamoto K. and Sasaki Y. Polarization-maintaining fibers and their applications // Journal of Lightwave Technology. 1986. Vol. 4, N 8. P. 1071—1089. DOI: 10.1109/JLT.1986.1074847.
- Medeiros A., Barcelos S., Rigon E., Rando R., Seminario J., Santos M., and Oliveira R. PMD Characterization of Installed Fiber Networks – Compromise Between Result Accuracy and Measurement Time // Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD). Optica Publishing Group, 2006. Art. no. NTuC4.
- Ten S., Edwards M. An Introduction to the Fundamentals of PMD in Fibers // White Paper. 2006. Vol. WP5051.
- Gilev D. G., Valiushina P. M., Maksimenko V. A., and Krishtop V. V. Determination of induced birefringence in fiber-optic resonator from frequency difference between main and additional resonance peaks // Opt. Continuum. 2022. Vol. 1, N 3. Р. 487—493.
- Drozdov I. R., Ovchinnikov K. A., Boychuk E. S., & Krishtop V. V. Two-stage method for comparing the lengths of optical fibers using OFDR // Intern. Conf. Laser Optics (ICLO). June 2022.
- Гилев Д. Г. Оценка динамического диапазона датчика угловой скорости на основе волоконно-оптического резонатора // Прикладная фотоника. 2023. Т. 10, № 1. С. 116—130.
- Денисов И. В., Лисовский Н. В. Систематизация чувствительных к изгибу волоконных световодов // Прикладная фотоника. 2023. Т. 10, № 1. С. 131—148.
- Краузин П. В., Трефилов И. А., Сагирова А. Р., Оглезнев А. А., Кондрашов А. Н., Юрина А. Д., Мельников Р. М. Алгоритм калибровки распределенного датчика температуры // Прикладная фотоника. 2023. Т. 10, № 2. С. 68—87.
- Kumar A., Ghatak A. Polarization of light with applications in optical fibers. SPIE, 2011. 246 р. ISBN: 9780819482150. https://doi.org/10.1117/3.861761.
- Rogers A. Polarization in Optical Fibers. Artech house, 2008. 250 р. ISBN: 9781580535342.
- Lefevre H. Fiber-optic gyroscopes. Artech house, 2022. 416 р.
- Бурдин В. А. Измерения длины биений оптических волокон при зондировании импульсами увеличенной длительности // T-Comm-Телекоммуникации и Транспорт. 2009. № S1. С. 175—177.
- Моршнев С. К. и др. Измерение длины биений в двулучепреломляющих волоконных световодах // Фотоника. 2018. Т. 12, №. 6. С. 616—633.
- Малыкин Г. Б. Эффект Саньяка. Корректные и некорректные объяснения // Успехи физических наук. 2000. Т. 170, №. 12. С. 1325—1349.
- Song J. Optical frequency domain reflectometry: Sensing range extension and enhanced temperature sensitivity: M.Sc. Thesis. University of Ottawa, 2014. 113 р.
- Song Jia, Li Wenhai, Lu Ping, Xu Yanping, Chen Liang & Bao Xiaoyi. Long-Range High Spatial Resolution Distributed Temperature and Strain Sensing Based on Optical Frequency-Domain Reflectometry // Photonics Journal. 2014. Vol. 6. Р. 1—8. doi 10.1109/JPHOT.2014.2320742.
- Gilev D. G., Ovchinnikov K. A., Krishtop V. V. et al. Fiber Optic Resonators for Angular Rate Sensors // Bull. Russ. Acad. Sci. Phys. 2022. Vol. 86, Suppl. 1. Р. S75—S80. https://doi.org/10.3103/S1062873822700423.Ovchinnikov K. A., Gilev D. G., Krishtop V. V. et al. Application of Optical Frequency Domain Reflectometry for the Study of Polarization Maintaining Fibers // Bull. Russ. Acad. Sci. Phys. 2022. Vol. 86, Suppl. 1. Р. S156—S162. https://doi.org/10.3103/S1062873822700599.
- Ovchinnikov K. A., Gilev D. G., Krishtop V. V. et al. Application of Optical Frequency Domain Reflectometry for the Study of Polarization Maintaining Fibers // Bull. Russ. Acad. Sci. Phys. 2022. Vol. 86, Suppl. 1. Р. S156—S162. https://doi.org/10.3103/S1062873822700599.