ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2024-67-8-637-646

UDC 519.725

SETS OF QUINARY KASAMI-LIKE SEQUENCES FOR DIGITAL INFORMATION TRANSMISSION SYSTEMS

V. G. Starodubtsev
Multiservice Nets and Telecommunications, Ltd., St. Petersburg; Head of Department


Y. G. Morozov
A. F. Mozhaisky Military Space Academy, Department of Technologies and Automation Tools for Processing and Analysis of Spacecraft Information ;

Reference for citation: Starodubtsev V. G., Morozov Y. G. Sets of quinary Kasami-like sequences for digital information transmission systems. Journal of Instrument Engineering. 2024. Vol. 67, N 8. P. 637–646 (in Russian). DOI: 10.17586/0021-34542024-67-8-637-646.

Abstract. For quinary basic M-sequences (MS) with the period N = 5S – 1 (S = 4, 6), sets of vectors of decimation indices IS,MK = (d1, d2, ..., dn) are presented, on the basis of which small sets of Kasami-like sequences (KLS) with the period N < 20 000 are formed in the finite fields GF(5S). It is shown that for values of S = 4, 6 the periodic cross-correlation function (PCCF) of a small set of KLS is four-level with a maximum value of the PCCF RmaxS,MK = (5S/2 + 1). The values of the volumes of small sets of quinary KLS are given.
Keywords: finite fields, correlation function, M-sequences, Kasami sequences, decimation indices

References:
  1. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.
  2. Vishnevskij V.M., Lyahov A.I., Portnoj S.L., Shahnovich I.V. Shirokopolosnye besprovodnye seti peredachi informacii (Broadband Wireless Data Transmission Network), Moscow, 2005, 592 p. (in Russ.)
  3. Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.
  4.  Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloe, nastoyashchee, budushchee (CDMA: Past, Present, Future), Moscow, 2003, 608 p. (in Russ.)
  5. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge, Cambridge Univ. Press, 2005.
  6. Ipatov V.P. Periodicheskie diskretnye signaly s optimal’nymi korrelyacionnymi svojstvami (Periodic Discrete Signals with Optimum Correlation Properties), Moscow, 1992, 152 p. (In Russ.)
  7. Gold R. IEEE Trans. Inf. Theory, 1968, no. 1(14), pp. 154.
  8. Boztaş S., Özbudak F., Tekin E. Cryptogr. Commun., 2018, no. 3(10), pp. 509.
  9. Cho Ch.-M., Kim J.-Y., No J.S. IEICE Transactions on Communications, 2015, no. 7(E98), pp. 1268.
  10. Starodubtsev V.G. Trudy SPIIRAN (SPIIRAS Proceedings), 2019, no. 4(18), pp. 912. (in Russ.)
  11. Choi S.T., Lim T., No J.S., Chung H. IEEE Trans. Inf. Theory, 2012, no. 3(58), pp. 1873.
  12. Xia Y., Chen S. IEEE Trans. Inf. Theory, 2012, no. 9(58), pp. 6037.
  13. Lee W., Kim J.-Y., No J.S. IEICE Transactions on Communications, 2014, no. 1(E97-B), pp. 2311.
  14. Song M.K., Song H.Y. IEEE Trans. Inf. Theory, 2018, no. 4(64), pp. 2901.
  15. Starodubtsev V.G. Journal of Communications Technology and Electronics, 2023, no. 2(68), pp. 128. (in Russ.)
  16. Helleseth T., Kumar P.V., Martinsen H. Designs, Codes and Cryptography, 2001, no. 2(23), pp. 157.
  17. Jang J.W., Kim Y.S., No J.S., Helleseth T. IEEE Trans. Inf. Theory, 2004, no. 8(50), pp. 1839.
  18. Starodubtsev V.G., Chetverikov E.A. Journal of Instrument Engineering, 2023, no. 10(66), pp. 807. (in Russ.)
  19. Starodubtsev V.G., Tkachenko V.V. Journal of Instrument Engineering, 2024, no. 2(67), pp. 107. (in Russ.)