ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

9
Issue
vol 67 / September, 2024
Article

DOI 10.17586/0021-3454-2024-67-8-647-656

UDC 004.942

EXPERIMENTAL STUDY OF CLUSTER PERFORMANCE WITH CONTAINER VIRTUALIZATION

. Phung Van Quy
ITMO University, Saint Petersburg, 197101, Russian Federation; PhD Student


V. A. Bogatyrev
ITMO University, Saint Petersburg, 197101, Russian federation; Saint Petersburg State University of Aerospace Instrumentation, Saint Petersburg, 190000, Russian Federation; Professor; Professor

Reference for citation: Quy Phung Van, Bogatyrev V. A. Experimental study of cluster performance with container virtualization. Journal of Instrument Engineering. 2024. Vol. 67, N 8. P. 647–656 (in Russian). DOI: 10.17586/0021-3454-2024-67-8647-656.

Abstract. The intensity of query servicing during automatic division of computer system resources between active, i.e. currently used, containers is investigated experimentally. At the first stage of experiments, the formation and deployment of a service (web server) on a cluster is performed. At the second stage, a test program is launched with the results saved in a log file. Algorithms for conducting experiments at the first and second stages are proposed. The experiments are conducted in a laboratory environment of Proxmox cloud virtualization and Kubernetes cluster management tools. A program in the Python programming language is developed to automate the deployment and update of the service configuration on the Kubernetes cluster. The program uses the SCP and PARAMIKO libraries for remote deployment and update of the service. The influence of the distribution of limited system resource capabilities between active and deployed containers in the system (virtual machine) on the intensity of request servicing was revealed. The obtained results can be used in the development of an analytical model for servicing a system with container virtualization, including virtual cluster systems.
Keywords: cluster, Kubernetes, servicing intensity, Docker, container, virtualization, virtual machine

References:
  1. Zinina T.S., Rudnik P.B. Tsifrovaya transformatsiya: ozhidaniya i real’nost’ (Digital Transformation: Expectations and Reality), Moscow, 2022, 221 р. (in Russ.)
  2. Emelyanov A.A., Korshunov I.L. Journal of Instrument Engineering, 2024, no. 2(67), pp. 116–121. (in Russ.)
  3. Polovko A.M., Gurov S.V. Osnovy teorii nadezhnosti (Fundamentals of Reliability Theory), St. Petersburg, 2006, 702 р. (in Russ.)
  4. Cherkesov G.N. Nadezhnost’ apparatno-programmnykh kompleksov (Reliability of Hardware and Software Systems), St. Petersburg, 2005, 479 р. (in Russ.)
  5. Khersonsky N.S., Bolshedvorskaya L.G. Crede Experto: transport, society, education, language, 2024, no. 1, pp. 6–23, DOI: 10.51955/2312-1327_2024_1_6. (in Russ.)
  6. Astakhova T., Shamin A., Verzun N., Kolbanev M.A. CEUR Workshop Proceedings, 2019, no. 2(2344).
  7. Gurjanov A.V., Korobeynikov A.G., Zharinov I.O., Zharinov O.O. III International Workshop on Modeling, Information Processing and Computing, 2021, рр. 103–108.
  8. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, no. 3(23), pp. 608–617. (in Russ.)
  9. Feng D., Lai L., Luo J. et al. Sci. China Inf. Sci., 2021, vol. 64, рр. 1–12, DOI: 10.1007/s11432-020-2852-1.
  10. Bogatyrev V.A. Information Technologies, 2006, no. 9, pp. 25–30. (in Russ.)
  11. Bogatyrev V.A.., Bogatyrev A.V. Information Technologies, 2015, no. 7(21), pp. 495–502. (in Russ.)
  12. Bogatyrev V.A., Bogatyrev A.V., .Bogatyrev S.V. Journal of Instrument Engineering, 2014, no. 9(57), pp. 54–58. (in Russ.)
  13. Tatarnikova Т.М., Arkhiptsev E.D., Karmanovskiy N.S. Journal of Instrument Engineering, 2023, no. 8(66), pp. 646–651. (in Russ.)
  14. Bogatyrev V.A., Bogatyrev A.V. Information Technologies, 2016, no. 6(22), pp. 409–416. (in Russ.)
  15. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 1, pp. 63–67. (in Russ.)
  16. Andreev S.D., Samouylov K.E., Tyurlikov A.M. Discrete and Continuous Models and Applied Computational Science, 2018, no. 4(26), pp. 357–370. (in Russ.)
  17. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Wave Electronics and its Application in Information and Telecommunication Systems, 2019, рр. 8840647.
  18. Lambropoulos G., Douligeris C., Mitropoulos S. Computers, 2021, no. 4(10).
  19. Bogatyrev V., Derkach A. Computers, 2020, no. 2(9), pp. 42.
  20. Shi F., Lin J. Computational Intelligence and Neuroscience, 2022, vol. 2022, рр. 7873131.
  21. Bogatyrev V.A., Aleksankov S.M., Derkach A.N. Physical Systems: Industry 4.0 Challenges. Studies in Systems, Decision and Control, 2020, vol. 260, pр. 11–21.
  22. Volkov А.О. T-Comm: Telecommunications and transport, 2020, no. 12(14), pp. 72–79, DOI: 10.36724/2072-8735- 2020-14-12-72-79. (in Russ.)
  23. Khomonenko A.D., Blagoveshchenskaya E.A., Prourzin O.V., Andruk A.A. High Technologies in Earth Space Research. H&ES Research, 2018, no. 4(10), pp. 72–82, DOI: 10.24411/2409-5419-2018-10099. (in Russ.)
  24. Tourouta E., Gorodnichev M., Polyantseva K., Moseva M. Digitalization of Society, Economics and Management: A Digital Strategy Based on Post-pandemic Developments, 2022, рр. 143–150, DOI: 10.1007/978-3-030-94252-6_10.
  25. Shibaev R.V. Avtomatizatsiya. Sovremennyye Tekhnologii, 2023, no. 2(77), pp. 74–81. (in Russ.)
  26. Aleksankov S.M. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, no. 6(15), pp. 1098–1104. (in Russ.)
  27. Toutov A., Vorozhtsov A., Toutova N. International Journal of Embedded and Real-Time Communication Systems, 2020, no. 2(11), pp. 58–75.
  28. Aqasizade H, Ataie E, Bastam M. arXiv preprint, 2024, DOI: 10.13140/RG.2.2.11457.33129.
  29. Pathirathna P.P.W., Ayesha V.A.I., Imihira W.A.T., Wasala W.M.J.C., Kodagoda N., Edirisinghe E.A.T.D. 11th Intern. Conf. on Software, Knowledge, Information Management and Applications (SKIMA), 2017, рр. 1–7, DOI: 10.1109/ SKIMA.2017.8294109.
  30. Zhou Yuyu et al. Proc. of the 2015 ACM/IEEE Conf. on Supercomputing, 2015.
  31. Mavridis I., and Karatza H. Future Generation Computer Systems, 2019, vol. 94, рр. 674–696, DOI: 10.1016/j. future.2018.12.035.
  32. Phung Van Quy, Bogatyrev V.A., Karmanovskiy N.S., Le V. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, no. 2(24), pp. 249–255, DOI: 10.17586/2226-1494-2024-24-2-249-255. (in Russ.)
  33. Wu Y., Zhang Y., Wang T., Wang H. IEEE Access, 2020, vol. 8, рр. 34127–34139. DOI: 10.1109/ ACCESS.2020.2973750.
  34. Liu Guannan, Xing Gao, Haining Wang, Kun Sun. 31st USENIX Security Symposium (USENIX Security 22), 2022, рр. 35–51.