DOI 10.17586/0021-3454-2019-62-6-576-584
УДК 681.5.015.8
ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ МОДЕЛИ СЕРВОПРИВОДА С НЕЛИНЕЙНОСТЯМИ ТИПА „МЕРТВОЕ ВРЕМЯ“
Вроцлавский университет науки и технологии, кафедра электрических машин, электроприводов и измерений ; зав. кафедрой
Ловлин С. Ю.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; доцент
Цветкова М. Х.
Университет ИТМО; студент
Абдуллин А. А.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; доцент
Маматов А. Г.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; ассистент, руководитель группы
Читать статью полностью
Аннотация. Предложен подход к автоматической идентификации электрических параметров сервопривода и ШИМ-инвертора, основанный на методе наименьших квадратов. Традиционно для параметрической идентификации сервоприводов используется линейная математическая модель объекта и не учитываются нелинейности, обусловленные „мертвым временем“ и падением напряжения на силовых ключах преобразователя. Выходное напряжение ШИМ-инвертора существенно искажается за счет этих особенностей, что ухудшает результаты идентификации. Предложенный метод идентификации использует модель, учитывающую влияние „мертвого времени“ и падение напряжения на силовых ключах преобразователя. Показано, что новый метод обладает более высокой точностью оценки параметров, чем метод, использующий линейную модель сервопривода.
Ключевые слова: идентификация, сервопривод, мертвое время, ШИМ-инвертор, метод наименьших квадратов
Список литературы:
Список литературы:
- Садовников М. А., Томасов В. С., Толмачев В. А. Прецизионный электропривод для оптических комплексов контроля космического пространства // Изв. вузов. Приборостроение. 2011. Т. 54, № 6. С. 81—86.
- Ловлин С. Ю., Поляков Н. А., Абдуллин А. А., Лукичев Д. В., Демидова Г. Л. Метод ограничения действующего значения токов моментного двигателя следящего электропривода // Изв. вузов. Приборостроение. 2018. Т. 61, № 8. С. 706—712.
- Lovlin S. Y., Tsvetkova M. H., Subbotin D. A. Identification of a permanent magnet synchronous motor system with dead-zone characteristics // Advances in Automatic Control: Proc. of the 16th Intern. Conf. on Automatic Control, Modelling & Simulation (ACMOS '14). 2014. N 35. P. 199—206.
- Томасов В. С., Ловлин С. Ю., Тушев С. А., Смирнов Н. А. Искажение выходного напряжения широтно-импульсного преобразователя прецизионного электропривода // Вестник Ивановского государственного энергетического университета. 2013. № 1. С. 84—87.
- Krause P. C. Analysis of Electric Machinery. NY: McGraw-Hill, 1986.
- Si G., Shen Z., Zhang Z. and Kennel R. Investigation of the limiting factors of the dead time minimization in a H-bridge IGBT inverter // 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). Auckland, 2016. P. 1—6.
- Anuchin A., Gulyaeva M., Briz F. and Gulyaev I. Modeling of AC voltage source inverter with dead-time and voltage drop compensation for DPWM with switching losses minimization // 2017 Intern. Conf. on Modern Power Systems (MPS). Cluj-Napoca, 2017. P. 1—6.
- Munoz-Garcia A. and Lipo T. A. On-line dead-time compensation technique for open-loop PWM-VSI drives // Proc. IEEE Applicat. Power Electon. Conf. 1998. P. 95—100.
- Urasaki N., Senjyu T., Uezatoand K., and Funabashi T. Adaptive deadtime compensation strategy for permanent magnet synchronous motor drive // IEEE Trans. Energy Convers. 2007. Vol. 22. P. 271—280.
- Qiu T., Wen X. and Zhao F. Adaptive-Linear-Neuron-Based Dead-Time Effects Compensation Scheme for PMSM Drives // IEEE Transactions on Power Electronics. 2016. Vol. 31, N 3. P. 2530—2538.
- Alawieh H., Riachy L., Arab Tehrani K., Azzouz Y. and Dakyo B. A new dead-time effect elimination method for H-bridge inverters // IECON 2016 — 42nd Annual Conference of the IEEE Industrial Electronics Society. Florence, 2016. P. 3153—3159.
- Alexandrou A. D., Adamopoulos N. K. and Kladas A. G. Development of a Constant Switching Frequency Deadbeat Predictive Control Technique for Field-Oriented Synchronous Permanent-Magnet Motor Drive // IEEE Transactions on Industrial Electronics. 2016. Vol. 63, N 8. P. 5167—5175.
- Attaianese C., Nardi V., and Tomasso G. A novel SVM strategy for VSI dead-time-effect reduction // IEEE Trans. Ind. Appl. 2005. Vol. 41. P. 1667—1674.
- Pillai M. S. and Vijina K. Efficient Commutation and Torque Ripples Minimization in BLDC Motor for Hoist Applications // 2018 Intern. Conf. on Control, Power, Communication and Computing Technologies (ICCPCCT). Kannur, 2018. P. 405—409.
- Xiao L., Tao W., and Wei F. Adaptive parameter identification based on dead-time compensation for permanent magnet synchronous machines for the 2011 // Proc. of the 11th Intern. Conf. on Control, Automation and Systems (ICCAS 2011). 2011. P. 1570—1575.
- Ловлин С. Ю., Маматов А. Г. Идентификация частотных характеристик прецизионных электроприводов квантово-оптических комплексов // Изв. вузов. Приборостроение. 2018. Т. 61, № 10. С. 897—907.
- Ljung L. System Identification: Theory for the User. MIT Press, Cambridge, MA, 1980.
- Omrane I., Etien E., Bachelier O., and W. Dib. A simplified least squares identification of permanent magnet synchronous motor parameters at standstill // Proc. 39th Annu. IEEE IECON. 2013. P. 2578—2583.