ISSN 0021-3454 (печатная версия)
ISSN 2500-0381 (онлайн версия)
Меню

1
Содержание
том 68 / Январь, 2025
СТАТЬЯ

COMPARISON OF ALGORITHMS FOR DETERMINING A SPACE VEHICLE ORIENTATION BASED ON ONE-TIME MEASUREMENTS


Ссылка для цитирования : Ponomareva M. A., Kramlikh A. V. Comparison of algorithms for determining a space vehicle orientation based on one-time measurements. Journal of Instrument Engineering. 2025. Vol. 68, N 1. P. 89–97 (in Russian). DOI: 10.17586/0021-3454-2025-68-1-89-97.

Аннотация. The problem of determining the orientation of a spacecraft using instantaneous measurements is investigated. A number of algorithms for determining the spacecraft orientation using one-time measurements of various physical nature are presented: TRIAD, Optimized TRIAD, q-Method, QUEST, ESOQ, ESOQ2, SVD. The following properties of the algorithms implemented in the MatLab mathematical package are analyzed: running time, average value and standard deviation of the orientation determination error measure, and the number of floating-point operations.
Ключевые слова: spacecraft, orientation, algorithm, one-time measurements, rotation matrix, quaternion, performance, accuracy, floating point calculations

Благодарность: The study was supported by the Russian Science Foundation grant No. 23-67-10007

Список литературы:
  1. Mohd Zamri H., Amran A., Abu Hassan A. et al. ARPN Journal of Engineering and Applied Sciences, 2016, no. 7(11), pp. 4455–4460. 
  2. Belokonov I.V., Timbay I.A. Dvizheniye nanosputnika otnositel’no tsentra mass na okolozemnykh orbitakh (Motion of a Nanosatellite Relative to the Center of Mass in Near-earth Orbits), Samara, 2020, 128 р. (in Russ.) 
  3. Branets V.N., Shmyglevsky I.P. Primeneniye kvaternionov v zadachakh oriyentatsii tverdogo tela (Application of Quaternions in Problems of Rigid Body Orientation), Moscow, 1973, 320 р. (in Russ.) 
  4. Black H.D. AIAA Journal, 1964, no. 7(2), pp. 1350–1351. 
  5. Shuster M.D., Oh S.D. Journal of Guidance and Control, 1981, no. 1(4), pp. 70–77. 
  6. Markley F.L., Crassidis J.L. Fundamentals of Spacecraft Attitude Determination and Control, Microcosm Press and Springer, 2014. 
  7. Bar-Itzhack Y.I., Harman R.R. Collection of Technical papers (A96-34712 09-12), 1996, рр. 422–427. 
  8. Wahba G.A. SIAM Review, 1965, no. 3(8), pp. 384–386. 
  9. Davenport P. NASA TN D-4696, 1968. 
  10. Markley F.L., Mortari D. AAS 99-427, AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, 1999. 
  11. Hajiyev C., Soken H.E. Fault Tolerant Attitude Estimation for Small Satellites, CRC Press, 2021. 
  12. Shuster M.D. AIAA Paper 78-1249, AlAA Guidance and Control Conference, Palo Alto, CA, August 7–9, 1978. 
  13. Mortari D. Journal of Astronautical Sciences, 1997, no. 2(45), pp. 195–205. 
  14. Mortari D. Paper AAS 97–167, AAS/AIAA Space Flight Mechanics Meeting, Huntsville, AL, February 10–12, 1997. 
  15. Markley F.L. Journal of the Astronautical Sciences, 1988, no. 3(36), pp. 245–258.
  16. Counting the Floating Point Operations (FLOPS), https://www.mathworks.com/matlabcentral/ fileexchange/50608-counting-the-floating-point-operations-flops.