ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

2
Issue
vol 68 / February, 2025
Article

EVALUATION OF THE EFFECT OF DYNAMIC INFLUENCES ON THE CHARACTERISTICS OF AN OPTICAL-ELECTRONIC DEVICE



Abstract. An optoelectronic device is considered, which implements a three-axis gyrostabilization system that ensuring effective operation in pitching conditions. A finite element model of the optoelectronic device functioning under the action of harmonic vibration and mechanical shocks associated with its operating conditions is calculated. The effect of dynamic influences on the position of the axes of sight of the optical devices included in the device is investigated. The deviations of the sighting axes obtained as a result of the calculation under the action of harmonic vibration exceed the permissible values. In order to reduce the influence of dynamic effects on the accuracy characteristics of the optoelectronic device, recommendations are given for refining the design to improve vibration tolerance.
Keywords: optical-electronic device, gyrostabilizer, three-axis stabilization system, laser rangefinder, sighting axes, vibration tolerance

References:

1. Pelpor D.S. Giroskopicheskiye sistemy. Teoriya giroskopicheskikh stabilizatorov (Gyroscopic Systems. Theory of Gyroscopic Stabilizers), Moscow, 1986, 423 р. (in Russ.) 2. Pelpor D.S. Giroskopicheskiye sistemy oriyentatsii i stabilizatsii (Gyroscopic Systems of Orientation and Stabilization), Moscow, 1982, 165 р. (in Russ.) 3. Seregin V.V. Prikladnaya teoriya i printsipy postroyeniya giroskopicheskikh sistem (Applied Theory and Principles of Designing Gyroscopic Systems), St. Petersburg, 2007, 78 р. (in Russ.) 4. Lysov A.N., Lysova A.A. Teoriya giroskopicheskikh stabilizatorov (Theory of Gyroscopic Stabilizers), Chelyabinsk, 2009, 117 р. (in Russ.) 5. Mosyagin G.M., Nemtinov V.B., Lebedev E.N. Teoriya optiko-elektronnykh sistem (Theory of Optical-Electronic Systems), Moscow, 1990, 432 р. (in Russ.) 6. Kamenev S.V. Osnovy metoda konechnykh elementov v inzhenernykh prilozheniyakh (Fundamentals of the Finite Element Method in Engineering Applications), Orenburg, 2019, 110 р. (in Russ.) 7. Makarov E.G. Metod konechnykh elementov v prochnostnykh raschetakh (Finite Element Method in Strength Calculations), St. Petersburg, 2017, 136 р. (in Russ.) 8. Zienkiewiez O.C. The finite element method in engineering science, London, 1971. 9. Gavrikov A.V., Vorona N.A. Mekhanicheskiye kolebaniya (Mechanical Vibrations), Moscow, 2011, 37 р. (in Russ.) 10. Beletskiy V.M., Krivov G.A. Alyuminiyevyye splavy: sostav, svoystva, tekhnologiya, primeneniye (Aluminum Alloys: Composition, Properties, Technology, Application), Kiyev, 2005, 365 р. (in Russ.) 11. Arsenyev S.I., Butkareva N.G., Mishin A.M., Sannikov V.A., Tituh I.N. Chislennyye metody resheniya dinamicheskikh zadach mekhaniki deformiruyemogo tverdogo tela (Numerical Methods for Solving Dynamic Problems of Mechanics of Deformable Solids), St. Petersburg, 1997, 71 р. (in Russ.) 12. Arkusha A.I. Tekhnicheskaya mekhanika: teoreticheskaya mekhanika i soprotivleniye materialov (Technical Mechanics: Theoretical Mechanics and Strength of Materials), Moscow, 2016, 352 р. (in Russ.) 13. Aleksandrov A.V., Potapov V.D., Derzhavin B.P. Soprotivleniye materialov (Strength of Materials), Moscow, 2003, 560 р. (in Russ.) 14. Feodosyev V.I. Soprotivleniye materialov (Strength of Materials), Moscow, 1999, 592 р. (in Russ.) 15. Leonov V.V., Artemyeva O.A., Kravtsova E.D. Materialovedeniye i tekhnologiya kompozitsionnykh materialov (Material Science and Technology of Composite Materials), Krasnoyarsk, 2007, 241 р. (in Russ.) 16. Kerber M.L., Vinogradov V.M., Golovkin G.S. Polimernyye kompozitsionnyye materialy: struktura, svoystva, tekhnologiya (Polymer Composite Materials: Structure, Properties, Technology), St. Petersburg, 2008, 560 р. (in Russ.) 17. Meleshko A.I., Polovnikov S.P. Uglerod, uglerodnyye volokna, uglerodnyye kompozity (Carbon, Carbon Fibers, Carbon Composites), Moscow, 2007, 192 р. (in Russ.)