ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

9
Issue
vol 67 / September, 2024
Article

DOI 10.17586/0021-3454-2018-61-2-141-147

UDC 681.51,004.896

ENERGY-EFFICIENT TRAJECTORY CONTROL OVER MANIPULATORS WITH REDUNDANT NUMBER OF DEGREES OF FREEDOM

S. A. Kolyubin
ITMO University, Saint Petersburg, 197101, Russian Federation; Associate Professor


O. D. Zavodovsky
ITMO University, Department of Computer Science and Control Systems; Student


Read the full article 

Abstract. The algorithms for optimizing the manipulator trajectories with an excessive number of degrees of freedom are investigated. The goal of optimization is to improve the energy efficiency of traffic. Trajectories are parameterized by spline functions passing through given points, and the search for optimal parameters is performed with the use of the gradient descent method with step division, which allows finding the global extremum. The chosen objective function simultaneously accounts for the influence of the electrical components of the system and ensures minimization of deviations from a given trajectory in the Cartesian space. The results of simulation modeling in the MatLab environment are presented for the example of optimizing the trajectories of the mobile manipulator Kuka youBot.
Keywords: redundant manipulaators, energy effeciency, optimization of trajectories, gradient descent method, reverse kinematics

References:
  1. Andreas J.C. Energy-Efficient Electric Motors, NY, Marcel Dekker, 1992, 200 p.
  2. Chen C., Lin C. J. of Systems and Control Eng., 1998, рр. 281–294. DOI: 10.1243/0959651981539460
  3. Hsu P., Hauser J., Sastry S. Journal of Robotic Systems, 1989, no. 6, pp.133–148.
  4. Barili A., Ceresa M., Parisi C. Intern. Symp. on Industrial Electronics, Pavia, 1995, рp. 674–676.
  5. Katoh R., Ichiyama O., Yamahoto T., Okhama F. Intern. Conference on Industrial Electronics, Control and Instrumentation, 1994, рр. 1064–1067.
  6. Yamasaki F., Hosoda K., Asada M. Proc. of the IEEE Intern. Conference on Intelligent Robots and Systems, Lausanne, 2002, рр. 2473–2477.
  7. Duleba I., Sasiadek J.Z. IEEE Trans. on Control Systems Technology, 2003, no. 3(11), pp. 355–363.
  8. Urrea C., Kern J. Intern. Journal of Advanced Robotic Systems, 2012, no. 58(9), pp.220–234. DOI: 10.5772/51701
  9. Khomchenko V.G., Solomin V.Yu. Mekhatronnye i robototekhnicheskie sistemy (Mechatronic and Robotic Systems), Omsk, 2008, 160 р. (in Russ.)
  10. Glebov N.I., Kochetov Yu.A., Plyasunov A.V. Metody optimizatsii(Optimization Methods), Novosibirsk, 2000, 105 р. (in Russ.)
  11. Wang J., Li Y., Zhao X. Intern. Journal of Advanced Robotic Systems, 2010, no. 4(7), pp.150–159.
  12. Siciliano B. Journal of Intelligent and robotic Systems, 1990, no. 3, pp.201–212.
  13. Kagan K.A. Optimum Trajectory Planning for Redundant Manipulators through Inverse Kinematics, PhD Dissertation, University of Bath, Bath, 2012, 211 p.
  14. Zhang Y., Li Y., Xiao X. Proc. of the IEEE Conference on Robotics and Biometrics, Zhuhai, 2015, рр. 1477–1482.
  15.