ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2023-66-10-807-817

UDC 519.725

FORMATION OF SETS OF TERNARY KASAMI-LIKE SEQUENCES FOR DIGITAL INFORMATION TRANSMISSION SYSTEMS

V. G. Starodubtsev
Multiservice Nets and Telecommunications, Ltd., St. Petersburg; Head of Department


E. A. Chetverikov
A. F. Mozhaisky Military Space Academy, Department of Technologies and Means for Automating the Processing and Analysis of Spacecraft Information ;


Read the full article 
Reference for citation: Starodubtsev V. G., Chetverikov E. A. Formation of sets of ternary Kasami-like sequences for digital information transmission systems. Journal of Instrument Engineering. 2023. Vol. 66, N 10. P. 807—817 (in Russian). DOI: 10.17586/0021-3454-2023-66-10-807-817.

Abstract. Sets of vectors of decimation indices IS(id1, id2, ..., idn) of ternary M-sequences are presented, on the basis of which small and large sets of Kasami-similar sequences (KSS) with periods N = 3S–1< 20000 are formed in finite fields GF(3S) (S = 4, 6, 8). It is shown that for even values of S, the periodic cross-correlation function of a small set of KSS is three-level with the maximum value of the module of the mutual correlation function Rmax = (3S/2+1)). The correlation function of a large set at S=4 is eight-level with Rmax = (2·3S/2+1), and at S = 6, 8 is ten-level with Rmax = (3S/2+1+1). The values of the volumes of small and large sets of ternary KSS are given.
Keywords: finite fields, correlation function, M-sequences, Kasami sequences, decimation indices

References:
  1. Vishnevskij V.M., Lyahov A.I., Portnoj S.L., Shahnovich I.V. Shirokopolosnye besprovodnye seti peredachi informacii (Broadband Wireless Data Transmission Network), Moscow, 2005, 592 p. (in Russ.)
  2. Sklar B. Digital Communications: Fundamentals and Applications, Prentice Hall, 2001, 1079 р.
  3. Ipatov V.P. Spread Spectrum and CDMA. Principles and Applications, NY, John Wiley and Sons Ltd., 2005, 488 р.
  4. Varakin L.E. and Shinakov Yu.S., ed., CDMA: proshloe, nastoyashchee, budushchee (CDMA: Past, Present, Future), Moscow, 2003, 608 p. (in Russ.)
  5. Ipatov V.P. Periodicheskie diskretnye signaly s optimal'nymi korrelyacionnymi svojstvami (Periodic Discrete Signals with Optimum Correlation Properties), Moscow, 1992, 152 p. (In Russ.).
  6. Golomb S.W., Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar, Cambridge, Cambridge Univ. Press, 2005.
  7. Boztaş S., Özbudak F., Tekin E. Cryptogr. Commun., 2018, no. 3(10), pp. 509.
  8. Cho Chang-Min, Kim Ji-Youp, No J.S. IEICE Transactions on Communications, 2015, no. 7(E98), pp. 1268.
  9. Choi S.T., Lim T., No J.S., Chung H. IEEE Trans. Inf. Theory., 2012, no. 3(58), pp. 1873.
  10. Dobbertin H., Helleseth T., Kumar P.V., Martinsen H. IEEE Trans. Inf. Theory, 2001, no. 4(47), pp. 1473.
  11. Helleseth T., Kumar P.V., Martinsen H. Designs, Codes and Cryptography, 2001, no. 2(23), pp. 157.
  12. Hu Z., Li X., Mills D., Muller E., Sun W., Williems W., Yang Y., Zhang Z. Applicable Algebra Eng. Commun. Comput., 2001, vol. 12, рр. 255.
  13. Seo E.Y., Kim Y.S., No J.S., Shin D.J. IEEE Trans. Inf. Theory, 2008, no. 7(54), pp. 3140.
  14. Jang J.W., Kim Y.S., No J.S., Helleseth T. IEEE Trans. Inf. Theory, 2004, no. 8(50), pp. 1839.
  15. Liang H., Tang Y. Finite Fields and Their Applications, 2015, vol. 31, рр. 137.
  16. Lee W.J., Kim J.Y., No J.S. IEICE Transactions on Communications, 2014, no. 1(E97-B), pp. 2311.
  17. Muller E.N. IEEE Trans. Inf. Theory, 1999, no. 1(45), pp. 289.
  18. Song M.K., Song H.Y. IEEE Trans. Inf. Theory, 2018, no. 4(64), pp. 2901.
  19. Gold R. IEEE Trans. Inf. Theory, 1968, no. 1(14), pp. 154.