ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

5
Issue
vol 68 / May, 2025
Article

DOI 10.17586/0021-3454-2025-68-5-406-416

UDC 681.51

FAST DECENTRALIZED CONTROL FOR UNIFORM DISTRIBUTION OF MOBILE ROBOTS

D. A. Galkina
ITMO University, Faculty of Control Systems and Robotics ;


K. A. Zimenko
ITMO University, Saint Petersburg, 197101, Russian Federation; Senior Scientific Researcher


D. E. Konovalov
ITMO University, Saint Petersburg, 197101, Russian Federation; student


A. A. Margun
ITMO University, Saint Petersburg, 197101, Russian Federation; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Saint Petersburg, 199178, Russian Federation; Associate professor; Scientific Researcher

Reference for citation: Galkina D. A., Zimenko K. A., Konovalov D. E., Margun A. A. Fast decentralized control for uniform distribution of mobile robots. Journal of Instrument Engineering. 2025. Vol. 68, N 5. P. 406–416 (in Russian). DOI: 10.17586/0021-3454-2025-68-5-406-416.

Abstract. The problem of synthesizing a fast decentralized control algorithm for uniform distribution of a group of mobile robots making up a multi-agent system, over a given straight line segment is considered. The aim of the study is to synthesize a group finite control algorithm to achieve distributed consensus and subsequently test it experimentally. The method used is based on the homogeneity theory and the implicit Lyapunov function method. The stability criteria for a multi-agent system are specified as a solution to a system of linear matrix inequalities. Unlike the existing method, the proposed approach allows weakening the stability criteria, simplifying the setup and application of the algorithm, as well as effectively analyzing the system dynamics and guaranteeing consensus in a finite time. The theoretical results are experimentally confirmed using an IP camera and 4 wheeled robots. The experiments demonstrated high efficiency of the proposed approach, which confirms its applicability to control problems in real conditions.
Keywords: finite control, group control, multi-agent systems, distributed consensus, homogeneous systems, wheeled robots

Acknowledgement: the study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (project no. FSER-2025-0002).

References:
  1. Ossowski S. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, vol. 5244 LNAI, рр. 2–12.
  2. Zakiev A., Tsoy T., Magid E. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11097 LNAI, рр. 291–300.
  3. Timm I.J., Scholz T., Herzog O., Krempels K.H., Spaniol O. Multiagent Engineering: Theory and Applications in Enterprises, Berlin Heidelberg, Springer, 2006, рр. 35–51.
  4. Desai J.P., Ostrowski J., Kumar V. Proc. IEEE Intern. Conf. on Robotics and Automation, 1998, vol. 4, рр. 2864–2869.
  5. Vorotnikov S., Ermishin K., Nazarova A., Yuschenko A. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, vol. 11097 LNAI, рр. 270–279.
  6. Huget M.P. Communication in Multiagent Systems: Agent Communication Languages and Conversation Policies, Berlin Heidelberg, Springer, 2003, 322 p.
  7. Belta C., Kumar V. IEEE Transactions on Robotics, 2004, vol. 20, рр. 865–875.
  8. Bhat S.P., Bernstein D.S. SIAM Journal on Control and optimization, 2000, no. 3(38), pp. 751–766.
  9. Orlov Y. SIAM Journal of Control and Optimization, 2004, no. 4(43), pp. 1253–1271.
  10. Bernuau E., Polyakov A., Efimov D., Perruquetti W. System and Control Letters, 2013, no. 12(62), pp. 1159–1167.
  11. Efimov D., Polyakov A., Perruquetti W. Richard J.P. IEEE Trans. Automatic Control, 2016, no. 1(61), pp. 210–215.
  12. Zimenko K., Efimov D., Polyakov A., Perruquetti W. Automatica, 2017, vol. 79, рр. 178–184.
  13. Korobov V.I. Soviet Physics. Doklady, 1979, no. 5(248), pp. 236–244. (in Russ.)
  14. Adamy J., Flemming A. Automatica, 2004, vol. 40, рр. 1821–1844.
  15. Polyakov A., Efimov D., Perruquetti W. Automatica, 2015, vol. 51, рр. 332–340.
  16. Polyakov A. Generalized homogeneity in systems and control, Springer, 2020, 447 p.
  17. Zubov B.I. Izvestiya Vysshih Uchebnyh Zavedenij. Matematika, 1958, no. 1, pp. 80–88. (in Russ.)
  18. Zubov V.I. Methods of A.M. Lyapunov and Their Applications, Noordhoff, Leiden, 1964, 263 p.
  19. Zimenko K., Polyakov A., Efimov D., Perruquetti W. IEEE Transact. on Automatic Control, 2020, no. 12(65), pp. 5429– 5436.
  20. Polyakov A. Intern. J. of Robust and Nonlinear Control, 2019, no. 3(29), pp. 682–701.
  21. Zimenko K., Efimov D., Polyakov A., Ping X. 62nd IEEE Conf. on Decision and Control (CDC), 2023, рр. 1427–1431.
  22. Parsegov S., Proskurnikov A. Proc. of 6th Intern. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2014, рр. 631–636.