ISSN 0021-3454 (печатная версия)
ISSN 2500-0381 (онлайн версия)

том 63 / Август, 2020

DOI 10.17586/0021-3454-2016-59-5-400-406


Заколдаев Р. А.
Университет ИТМО, кафедра лазерных технологий и экологического приборостроения, Санкт-Петербург; магистрант

Костюк Г. К.
Университет ИТМО, кафедра лазерных технологий и экологического приборостроения, Санкт-Петербург; старший преподаватель

Сергеев М. М.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; научный сотрудник

Яковлев Е. Б.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; профессор

Коваль В. В.
Университет ИТМО, кафедра лазерных технологий; студент

Рымкевич В. С.
Университет ИТМО, кафедра лазерных технологий; студент

Читать статью полностью 

Аннотация. A new technology for microlens array fabrication is presented. The technology is based on creation of the initial microstructures on fused silica by laser indirect method, and the following reflow process of these structures made by CO2 laser action. Microlens arrays with diameter of microlens equal to 150 μm are fabricated. The focal length of microlens varies from 5 up to 5 mm. Profiles of formed microlens correspond to circle equation.
Ключевые слова: fused silica microstructuring, microlens array, LIBBH, CO2 laser

Список литературы:
  1. McCormick F. et al. Optical interconnections using microlens arrays // Optical and Quantum Electronics. 1992. Vol. 24, N 4. P. 465—477.
  2. Dickey F. M. Laser Beam Shaping: Theory and Techniques. CRC Press, 2014.
  3. Dickey F. M., Lizotte T. E. Imaging micro lens array beam integrator system design for fiber injection // SPIE Opt. Engineering & Applications; Intern. Soc. for Optics and Photonics. 2011.
  4. Dames M. P. et al. Efficient optical elements to generate intensity weighted spot arrays: design and fabrication // Appl. Opt. 1991. Vol. 30, N 19. P. 2685—2691.
  5. Ottevaere H. et al. Comparing glass and plastic refractive microlenses fabricated with different technologies // J. of Optics A: Pure and Applied Optics. 2006. Vol. 8, N 7. P. S407.
  6. Bansal N. P., Doremus R. H. Handbook of Glass Properties. Elsevier, 2013.
  7. Roy E. et al. Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays // Microelectronic Engineering. 2009. Vol. 86, N 11. P. 2255—2261.
  8. Langridge M. T. et al. The fabrication of aspherical microlenses using focused ion-beam techniques // Micron. 2014. Vol. 57. P. 56—66.
  9. Chang C., Yang S. Y., Sheh J. A roller embossing process for rapid fabrication of microlens arrays on glass substrates // Microsystem Technologies. 2006. Vol. 12, N 8. P. 754—759.
  10. Wakaki M., Komachi Y., Kanai G. Microlenses and microlens arrays formed on a glass plate by use of a CO 2 laser // Appl. Opt. 1998. Vol. 37, N 4. P. 627—631.
  11. Endert H., Pätzel R., Basting D. Excimer laser: a new tool for precision micromachining // Optical and Quantum Electronics. 1995. Vol. 27, N 12. P. 1319—1335.
  12. Guo R. et al. Microlens fabrication by means of femtosecond two photon photopolymerization // Opt. Express. 2006. Vol. 14, N 2. P. 810—816.
  13. Kopitkovas G. et al. Laser processing of micro-optical components in quartz // Appl. Surface Sci. 2007. Vol. 254, N 4. P. 1073—1078.
  14. Wang J., Niino H., Yabe A. Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching // Appl. Phys. A. 1999. Vol. 69, N 1. P. S271—S273.
  15. Ding X. et al. Laser-induced back-side wet etching of fused silica with an aqueous solution containing organic molecules // Appl. Phys. A. 2002. Vol. 75, N 3. P. 437—440.
  16. Wang J., Niino H., Yabe A. One-step microfabrication of fused silica by laser ablation of an organic solution // Appl. Phys. A. Materials Science & Processing. 1999. Vol. 68, N 1. P. 111—113.
  17. Smausz T. et al. Influence on the laser induced backside dry etching of thickness and material of the absorber, laser spot size and multipulse irradiation // Appl. Surface Sci. 2007. Vol. 254, N 4. P. 1091—1095.
  18. Chao H. et al. Fabrication of microtransmittance grating using laser induced backside dry etching // J. of Laser Applications. 2012. Vol. 24, N 1. P. 012001.
  19. Niino H. et al. Surface micro-fabrication of silica glass by excimer laser irradiation of organic solvent // J. of Photochem. and Photobiol. A: Chemistry. 2003. Vol. 158, N 2. P. 179—182.
  20. Niino H. et al. Imprinting by hot embossing in polymer substrates using a template of silica glass surface-structured by the ablation of LIBWE method // Appl. Phys. A. 2004. Vol. 79, N 4—6. P. 827—828.
  21. Kawaguchi Y. et al. Rapid prototyping of silica glass microstructures by the LIBWE method: Fabrication of deep microtrenches // J. of Photochem. and Photobiol. A: Chemistry. 2006. Vol. 182, N 3. P. 319—324.
  22. Niino H. et al. Surface micro-structuring of silica glass by laser-induced backside wet etching with ns-pulsed UV laser at a high repetition rate // J. of Laser Micro/ Nanoengineering. 2006. Vol. 1, N 1. P. 39—43.
  23. Hopp B. et al. Comparative study of different indirect laser-based methods developed for microprocessing of transparent materials. JLMN // J. of Laser Micro/Nanoengineering. 2010. Vol. 5, N 1. P. 80—85.
  24. Hanada Y. et al. Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials // Appl. Phys. A. 2004. Vol. 79, N 4—6. P. 1001—1003.
  25. Hong M. et al. Laser-induced-plasma-assisted ablation for glass microfabrication // Intern. Symp. on Photonics and Applications; Intern. Soc. for Optics and Photonics. 2001.
  26. Hong M. et al. Laser microfabrication of transparent hard materials and signal diagnostics // Appl. Surface Sci. 2002. Vol. 186, N 1. P. 556—561.
  27. Kostyuk G. K. et al. Fast microstructuring of silica glasses surface by NIR laser radiation // Optics and Lasers in Engineering. 2015. Vol. 68. P. 16—24.
  28. Sergeev M. M. et al. Laser induced passivation of porous glass to protect it from chemical degradation and aging // Protection of Metals and Physical Chemistry of Surfaces. 2015. Vol. 3. P. 427—435.
  29. Zakoldaev R. et al. Laser-induced black-body heating (LIBBH) as a method for glass surface modification // J. of Laser Micro/Nanoengineering. 2015. Vol. 10, N 1. P. 15—19.
  30. Kostyuk G. et al. Laser-induced glass surface structuring by LIBBH technology // Optical and Quantum Electronics. 2016. Vol. 48, N 4. P. 1—8.
  31. Kostyuk G. et al. Microlens array fabrication on fused silica influenced by NIR laser // Appl. Phys. B. 2016. Vol. 122, N 4. P. 1—8.
  32. Wlodarczyk K. L. et al. Laser smoothing of binary gratings and multilevel etched structures in fused silica // Appl. Opt. 2010. Vol. 49, N 11. P. 1997—2005.
  33. Choi H.-K. et al. Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique // Optics & Laser Technology. 2015. Vol. 75. P. 63—70.
  34. Elhadj S. et al. Laser-based dynamic evaporation and surface shaping of fused silica with assist gases: a path to rimless laser machining // Appl. Phys. B. 2013. Vol. 113, N 3. P. 307—315.
  35. Fundamentals of Laser-Assisted Micro- and Nanotechnologies / Ed: V. P. Veiko, V. I. Konov. Springer, 2014. P. 149—171.
  36. Metev S. M., Veiko V. P. Laser-Assisted Microtechnology. Springer Science & Business Media. 2013.
  37. Palik E. D. Handbook of optical constants of solids // Academic Press. 1998. Vol. 3.
  38. Markillie G. A. et al. Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components // Appl. Opt. 2002. Vol. 41, N 27. P. 5660—5667.
  39. Born M., Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. CUP Archive. 2000.