DOI 10.17586/0021-3454-2021-64-9-728-740
УДК 681.5.015.8
ЧИСЛЕННЫЕ МЕТОДЫ ОПТИМИЗАЦИИ РОБАСТНОГО УПРАВЛЕНИЯ РОБОТОТЕХНИЧЕСКИМИ И МЕХАТРОННЫМИ СИСТЕМАМИ
Вроцлавский университет науки и технологии, кафедра электрических машин, электроприводов и измерений ; зав. кафедрой
Ловлин С. Ю.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; доцент
Цветкова М. Х.
Университет ИТМО; студент
Мусалимов В. М.
Институт проблем машиноведения Российской академии наук, Санкт-Петербург, 199178, Российская Федерация; главный научный сотрудник
Абрамчук М. В.
Университет ИТМО; ассистент
Читать статью полностью
Аннотация. Предложен новый численный метод оптимизации робастных регуляторов робототехнических и мехатронных систем. Метод основан на минимизации максимума амплитудно-частотной характеристики передаточной функции системы управления от возмущения к регулируемой координате. Устойчивость системы обеспечивается новым методом ограничения области поиска параметров регулятора, основанным на радиусе запаса устойчивости. Этот метод оптимизации состоит из параметрической и структурной настройки системы управления. Приведены результаты экспериментов, подтверждающие верность метода.
Ключевые слова: робастное управление, мехатронные системы, численные методы
Список литературы:
Список литературы:
- Шабашов А. А. Разработка метода построения области и запасов устойчивости в плоскости передаточных чисел для синтеза системы стабилизации беспилотного летательного аппарата // Социально-экономические и технические проблемы оборонно-промышленного комплекса: история, реальность, инновации: Межвуз. сб. статей по материалам V Всерос. науч.-практ. конф. Нижний Новгород, 2018. С. 229—233.
- Грызлов А. А., Григорьев М. А. Частотные методы синтеза высокоскоростных регулируемых электроприводов компрессоров // Электротехника. 2019. № 5. С. 9—15.
- Гундарева М. О., Русский Е. Ю. Синтез системы автоматического управления тоннельным вентилятором метрополитена модальным методом // Наука, промышленность, оборона: Тр. XVIII Всерос. науч.-техн. конф.; Под ред. С. Д. Саленко. Новосибирск, 2017.
- Воловодов С. К., Смольников А. В. Частотный метод синтеза систем управления морских подвижных объектов // Системы управления и обработки информации: науч.-техн. сб. СПб: НПО „Аврора“, 2018. Вып. 2. С. 18—24.
- Орловска-Ковальска Т., Ловлин С. Ю., Цветкова М. Х., Абдуллин А. А., Маматов А. Г. Параметрическая идентификация модели сервопривода с нелинейностями типа „мертвое время“ // Изв. вузов. Приборостроение. 2019. Т. 62, № 6. С. 576—584.
- Patil N., Behere D. Performance analysis of pid and lqg control algorithms for antenna position control system // J. on Electrical Engineering. 2019. Vol. 13, N 1. P. 12—18.
- Krishnan T. V. D., Krishnan C. M. C., Vittal K. P. Design of robust H-infinity speed controller for high performance BLDC servo drive // IEEE Intern. Conf. on Smart grids, Power and Advanced Control Engineering (ICSPACE). 2017. P. 37—42.
- Derets O., Sadovoi O., Derets Y. Synthesis algorithm of proximate time-optimal servo drive with constraint of state coordinates // IEEE 20th Intern. Conf. on Computational Problems of Electrical Engineering (CPEE). 2019. P. 1—4.
- Lukichev D. V., Demidova G. L. PID-type fuzzy adaptive control for two-mass servo-drive system: Design, simulation and experiment // IX Intern. Conf. on Power Drives Systems (ICPDS), Perm. 2016. P. 1—5.
- Gribanov P. S., Lovlin S. Y., Lukichev D. V. Realization of acceleration feedback to improve accuracy of servo drive with mechanical elasticity // IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow. 2018. P. 872—877.
- Shustov I. V., Tolmachev V. A., Lovlin S. Y. Method of control system design with predetermined overshoot for optical axis servo drives of SLR Station // IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg — Moscow. 2020. P. 867—872.
- Toscano R. A simple robust PI/PID controller design via numerical optimization approach // J. of Process Control. 2005. Vol. 15, iss. 1. Р. 81—88.
- Hassan N. A., Youssef I. K., Tamer M. Rageh numerical optimization of fractional order PID controller // Intern. Journal of Mathematics and Statistics Invention (IJMSI). 2017. Vol. 5, iss. 2. Р. 15—20.
- Zhmud V., Dimitrov L., Semibalamut V., Taichenachev A. Calculation of PID-regulator for MISO system with the method of numerical optimization // Intern. Siberian Conf. on Control and Communications (SIBCON), Astana. 2017. P. 1—7,
- Janin Z., Mad Kaidi H., Ahmad R., Khan, S. Derivative proportional — integral controller using nelder-mead optimization for glycerine purification heating process // Intern. Journal of Integrated Engineering. 2020. N 12(6). P. 200—206.
- Chunlei Zhang, Raúl Ordóñez. Robust and adaptive design of numerical optimization-based extremum seeking control // Automatica. 2009. Vol. 45, iss. 3, Р. 634—646.
- Vweza A. O., Chong K. T, Lee D. J. Gradient-free numerical optimization-based extremum seeking control for multiagent systems // Intern. Journal Control Autom. Syst. 2015. N 13. Р. 877—886.
- Bryant A. T., Wang Y., Finney S. J., Lim T. C., Palmer P. R. Numerical optimization of an active voltage controller for high-power IGBT converters // IEEE Trans. on Power Electronics. 2007. Vol. 22, N 2. Р. 374—383.
- Zhang C., Ordonez R. Extremum seeking control based on numerical optimization and state regulation. Part II: Robust and adaptive control design // Proc. of the 45th IEEE Conf. on Decision and Control, San Diego, CA. 2006. Р. 4460—4465.
- Демидова Г. Л., Ловлин С. Ю., Цветкова М. Х. Синтез следящего электропривода азимутальной оси телескопа с эталонной моделью в контуре положения // Вестн. ИГЭУ. 2011. № 2. С. 77—81.
- Lovlin S., Poliakov N., Abdullin A. An Effective current limitation algorithm for servo drive // X Intern. Conf. on Electrical Power Drive Systems (ICEPDS). Novocherkassk, 2018. P. 1—4.
- Bode H.W. Network Analysis and Feedback Amplifier Design. Shanghai: Tung Hwa Book Company, 1949.
- Aleksandrov А. G. The robustness criteria for non-stationary control systems // Analytical methods for controllers design. Saratov, 1980. P. 3—14.