DOI 10.17586/0021-3454-2023-66-8-627-636
УДК 681.51
АДАПТИВНЫЙ НАБЛЮДАТЕЛЬ ПЕРЕМЕННЫХ СОСТОЯНИЯ НЕЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ С НЕИЗВЕСТНЫМИ ПОСТОЯННЫМИ ПАРАМЕТРАМИ
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; инженер
Бобцов А. А.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; директор мегафакультета, профессор факультета систем управления и робототехники, руководитель Международного научного центра «Нелинейные и адаптивные системы управления»
Николаев Н. А.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; доцент
Читать статью полностью
Ссылка для цитирования : Козачёк О. А., Бобцов А. А., Николаев Н. А. Адаптивный наблюдатель переменных состояния нелинейной нестационарной системы с неизвестными постоянными параметрами // Изв. вузов. Приборостроение. 2023. Т. 66, № 8. С. 627—636. DOI: 10.17586/0021-3454-2023-66-8-627-636.
Аннотация. Предложен адаптивный наблюдатель вектора состояния нелинейной нестационарной системы по измерениям выходной переменной. Задача решена для случая, когда матрица (вектор) управления и нелинейный компонент уравнения состояния системы содержат неизвестные постоянные параметры. При синтезе наблюдателя проводится предварительная параметризация исходной нелинейной системы. Затем полученная система приводится к линейной регрессионной модели. На следующем этапе неизвестные постоянные параметры регрессии оцениваются с помощью метода наименьших квадратов с фактором забывания (forgetting factor). Результат предыдущей работы авторов, в которой рассмотрена линейная нестационарная система, содержащая неизвестные параметры в матрице (векторе) управления, расширен на случай, когда уравнение состояния системы содержит частично неизвестную нелинейность. Работоспособность предложенного алгоритма проиллюстрирована математическим моделированием.
Аннотация. Предложен адаптивный наблюдатель вектора состояния нелинейной нестационарной системы по измерениям выходной переменной. Задача решена для случая, когда матрица (вектор) управления и нелинейный компонент уравнения состояния системы содержат неизвестные постоянные параметры. При синтезе наблюдателя проводится предварительная параметризация исходной нелинейной системы. Затем полученная система приводится к линейной регрессионной модели. На следующем этапе неизвестные постоянные параметры регрессии оцениваются с помощью метода наименьших квадратов с фактором забывания (forgetting factor). Результат предыдущей работы авторов, в которой рассмотрена линейная нестационарная система, содержащая неизвестные параметры в матрице (векторе) управления, расширен на случай, когда уравнение состояния системы содержит частично неизвестную нелинейность. Работоспособность предложенного алгоритма проиллюстрирована математическим моделированием.
Ключевые слова: адаптивный наблюдатель, нелинейная система, нестационарная система, линейная регрессионная модель, идентификация параметров
Благодарность: статья подготовлена при финансовой поддержке Российского научного фонда, грант 22-21-00499.
Список литературы:
Благодарность: статья подготовлена при финансовой поддержке Российского научного фонда, грант 22-21-00499.
Список литературы:
- Каленова В. И., Морозов В. М. Линейные нестационарные системы и их приложения к задачам механики: учеб. пособие. М.: ФИЗМАТЛИТ, 2010. 208 с. ISBN 978-5-9221-1231-4.
- Баландин Д. В., Коган М. М. Управление и оценивание в линейных нестационарных системах на основе эллипсоидальных множеств достижимости // Автоматика и телемеханика. 2020. № 8. C. 8—28.
- Haotian Xu, Shuai Liu, Shangwei Zhao, Jingcheng Wang. Distributed control for a class of nonlinear systems based on distributed high-gain observer // ISA Transactions, 2023. Vol. 138, N 7. DOI:10.1016/j.isatra.2023.03.002.
- Venkateswaran S., Kravaris C. Linear Unknown Input Observers for Sensor Fault Estimation in Nonlinear Systems // IFAC-PapersOnLine. 2023. Vol. 56, is. 1. P. 61—66.
- Bobtsov A., Ortega R., Yi B., Nikolaev N. Adaptive state estimation of state-affine systems with unknown time-varying parameters // Intern. J. of Control. 2021. Vol. 95, N 9. Р. 1—26. DOI:10.1080/00207179.2021.1913647.
- Glushchenko A., Lastochkin K. Robust Time-Varying Parameters Estimation Based on I-DREM Procedure // arXiv preprint arXiv:2111.11716, 2021.
- Gao F., Jiang G., Zhang Z., Song J. An adaptive observer for actuator and sensor fault diagnosis in linear time-varying systems // Proc. of the 10th World Congress on Intelligent Control and Automation. IEEE, 2012. P. 3281—3285.
- Wang F., Zong M., Chen W. Fault diagnosis of linear time-varying system based on high gain adaptive compensation sliding mode observer // 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2017. P. 1688—1691.
- Кочетков С. А. Об одном алгоритме идентификации параметров в линейных нестационарных системах // Тр. IX Междунар. конф. „Идентификация систем и задачи управления“ SICPRO'12. 2012. C. 195—209.
- Bobtsov A., Nikolaev N., Slita O., Kozachek O., Oskina O. Adaptive observer for a LTV system with partially unknown state matrix and delayed measurements // 14th Intern. Congress on Ultra Modern Telecommunications and Control Systems and Workshops. ICUMT-2022. 2022. P. 165—170.
- Бобцов А. А., Николаев Н. А., Ортега Мартинес Р., Слита О. В., Козачёк О. А. Адаптивный наблюдатель переменных состояния линейной нестационарной системы с частично неизвестными параметрами матрицы состояния и вектора входа // Мехатроника, автоматизация, управление. 2022. Т. 23, № 6. С. 283—288.
- Rugh W. J. Linear system theory. Prentice-Hall, Inc., 1996.
- Tranninger M., Seeber R., Zhuk S., Steinberger M., and Horn M. Detectability Analysis and Observer Design for Linear Time Varying Systems // IEEE Control Systems Letters. 2020. Vol. 4, N 2. P. 331—336.
- Tranninger M., Zhuk S., Steinberger M., Fridman L., Horn M. Non-Uniform Stability, Detectability, and Sliding Mode Observer Design for Time Varying Systems with Unknown Inputs // arXiv preprint arXiv:1809.06460. 2018.
- Aranovskiy S., Bobtsov A., Ortega R., and Pyrkin A. Performance enhancement of parameter estimators via dynamic regressor extension and mixing // IEEE Transactions on Automatic Control. 2016. Vol. 62, N 7. P. 3546—3550.
- Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Parameters estimation via dynamic regressor extension and mixing // 2016 American Control Conference (ACC). IEEE. 2016. P. 6971—6976.
- Мирошник И. В., Никифоров В. О., Фрадков А. Л. Нелинейное и адаптивное управление сложными динамическими системами. М.: Наука, 2000. 549 с.
- Ljung L. System identification // Signal analysis and prediction. Boston, MA: Birkhäuser, 1998. P. 163—173.
- Sastry S., Bodson M. Adaptive Control: Stability, Convergence and Robustness. New Jersey: Prentice-Hall, 1989.