ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

4
Issue
vol 67 / April, 2024
Article

DOI 10.17586/0021-3454-2016-59-5-400-406

MICROLENS ARRAY FABRICATION ON FUSED SILICA BY LIBBH TECHNOLOGY WITH CO2 LASER SMOOTHING

R. A. Zakoldaev
ITMO University, Department of Laser Technologies and Applied Ecology, St. Petersburg; Graduate Student


G. K. Kostyuk
ITMO University, Department of Laser Technologies and Applied Ecology, St. Petersburg; Senior Lecturer


Сергеев М. М.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; научный сотрудник


Y. B. Yakovlev
ITMO University, Saint Petersburg, 197101, Russian Federation; Professor


V. V. Koval
ITMO University, Department of Laser Technologies; student


V. S. Rumkevich
ITMO University, Department of Laser Technologies; student


Read the full article 

Abstract. A new technology for microlens array fabrication is presented. The technology is based on creation of the initial microstructures on fused silica by laser indirect method, and the following reflow process of these structures made by CO2 laser action. Microlens arrays with diameter of microlens equal to 150 μm are fabricated. The focal length of microlens varies from 5 up to 5 mm. Profiles of formed microlens correspond to circle equation.
Keywords: fused silica microstructuring, microlens array, LIBBH, CO2 laser

References:
  1. McCormick F. et al. Optical and Quantum Electronics, 1992, no. 4(24), pp. 465–477.
  2. Dickey F. M. Laser Beam Shaping: Theory and Techniques,CRC Press, 2014.
  3. Dickey F. M., Lizotte T. E. SPIE Opt. Engineering & Applications; Intern. Soc. for Optics and Photonics, 2011.
  4. Dames M. P. et al. Appl. Opt., 1991, no. 19(30), pp. 2685–2691.
  5. Ottevaere H. et al. J. of Optics A: Pure and Applied Optics, 2006, no. 7(8), pp. S407.
  6. Bansal N. P., Doremus R. H. Handbook of Glass Properties, Elsevier, 2013.
  7. Roy E. et al. Microelectronic Engineering, 2009, no. 11(86), pp. 2255–2261.
  8. Langridge M. T. et al. Micron, 2014, no. 57, pp. 56–66.
  9. Chang C., Yang S.Y., Sheh J. Microsystem Technologies, 2006, no. 8(12), pp. 754–759.
  10. Wakaki M., Komachi Y., Kanai G. Appl. Opt., 1998, no. 4(37), pp. 627–631.
  11. Endert H., Pätzel R., Basting D. Optical and Quantum Electronics, 1995, no. 12(27), pp. 1319–1335.
  12. Guo R. et al. Opt. Express, 2006, no. 2(14), pp. 810–816.
  13. Kopitkovas G. et al. Appl. Surface Sci., 2007, no. 4(254), pp. 1073–1078.
  14. Wang J., Niino H., Yabe A. Appl. Phys. A, 1999, no. 1(69), pp. S271–S273.
  15. Ding X. et al. Appl. Phys. A, 2002, no. 3(75), pp. 437–440.
  16. Wang J., Niino H., Yabe A. Appl. Phys. A. Materials Science & Processing, 1999, no. 1(68), pp. 111–113.
  17. Smausz T. et al. Appl. Surface Sci., 2007, no. 4(254), pp. 1091–1095.
  18. Chao H. et al. J. of Laser Applications, 2012, no. 1(24), pp. 012001.
  19. Niino H. et al. J. of Photochem. and Photobiol. A: Chemistry, 2003, no. 2(158), pp. 179–182.
  20. Niino H. et al. Appl. Phys. A, 2004, no. 4–6(79), pp. 827–828.
  21. Kawaguchi Y. et al. J. of Photochem. and Photobiol. A: Chemistry, 2006, no. 3(182), pp. 319–324.
  22. Niino H. et al. J. of Laser Micro/ Nanoengineering, 2006, no. 1(1), pp. 39–43.
  23. Hopp B. et al. J. of Laser Micro/Nanoengineering, 2010, no. 1(5), pp. 80–85.
  24. Hanada Y. et al. Appl. Phys. A, 2004, no. 4–6(79), pp. 1001–1003.
  25. Hong M. et al. International Symposium on Photonics and Applications; Intern. Soc. for Optics and Photonics, 2001.
  26. Hong M. et al. Appl. Surface Sci., 2002, no. 1(186), pp. 556–561.
  27. Kostyuk G. K. et al. Optics and Lasers in Engineering, 2015, no. 68, pp. 16–24.
  28. Sergeev M. M. et al. Protection of Metals and Physical Chemistry of Surfaces, 2015, no. 3, pp. 427–435.
  29. Zakoldaev R. et al. J. of Laser Micro/Nanoengineering, 2015, no. 1(10), pp. 15–19.
  30. Kostyuk G. et al. Optical and Quantum Electronics, 2016, no. 4(48), pp. 1–8.
  31. Kostyuk G. et al. Appl. Phys. B, 2016, no. 4(122), pp. 1–8.
  32. Wlodarczyk K. L. et al. Appl. Opt., 2010, no. 11(49), pp. 1997–2005.
  33. Choi H.-K. et al. Optics & Laser Technology, 2015, no. 75, pp. 63–70.
  34. Elhadj S. et al. Appl. Phys. B, 2013, no. 3(113), pp. 307–315.
  35. Veiko V.P., Konov V.I., eds., Fundamentals of Laser-Assisted Micro-and Nanotechnologies, Springer, 2014, рр. 149–171.
  36. Metev S.M., Veiko V.P. Laser-Assisted Microtechnology, Springer Science & Business Media, 2013.
  37. Palik E. D. Handbook of optical constants of solids, Academic press, 1998, no. 3.
  38. Markillie G. A. et al. Appl. Opt., 2002, no. 27(41), pp. 5660–5667.
  39. Born M., Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, CUP Archive, 2000.