ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

1
Issue
vol 67 / January, 2024
Article

DOI 10.17586/0021-3454-2016-59-9-780-786

UDC 662.62;544.032.2

APPLICATION OF THE DISCRETE ELEMENT METHOD FOR MODELING OF ROCKS CRUSHING IN A JAW CRUSHER

I. I. Beloglazov
St. Petersburg Mining University, Department of Technological Process Automation and Production;


D. A. Ikonnikov
St. Petersburg Mining University, Department of Industrial Safety;


Read the full article 

Abstract. Application of the discrete element method for modeling of rocks crushing in a jaw crusher is considered. Interaction between the jaw crusher walls and the bulk material under processing is studied. The process of modeling is examined stage by stage starting from the crusher construction design in solid and surface-modeling system Solid Edge. Modelling of the crushing process is based on experimental data obtained using the crushing unit BOYD. Results of the study of the material crushing process and size distribution of the rock mass pieces are presented. Comparative analysis of actual experimental data with the modeling process is performed.
Keywords: modeling, jaw crusher, discrete element method, crushing, coarse crushing

References:
  1. Morton D., Dunstull S. Minerals Engineering, 2004, no. 17, pp. 1199–1207.
  2. Morrison R.D., Cleary P.W. Minerals Engineering, 2004, no. 17, pp. 1117–1124.
  3. Mishra B.K., Murty C. Powder Technology, 2001, no. 115, pp. 290–297.
  4.  Djodjevic N., Shi F.N., Morrison R.D. Minerals Engineering, 2003, no. 16, pp. 983–991.
  5. Tomas J., Schreier M., Gröger T., Ehlers S. Powder Technology, 1999, no. 105, pp. 39–51.
  6. Refahi A., Aghazadeh Mohandesi J., Rezai B. J. of the South. African Inst. of Mining and Metallurgy, 2009, no. 109, pp. 709–717.
  7.  Legendre D., Zevenhoven R. Energy, 2014, no. 74, pp. 119–130.
  8. Cleary P.W., Sinnott M.D. Minerals Engineering, 2015, no. 74, pp. 178–197.
  9. Arsent'ev V.A., Blekhman I.I., Blekhman L.I., Vaysberg L.A. Obogashchenie Rud (Mineral Processing), 2010, no. 1, pp. 30–35. (in Russ.)
  10. Feoktistov A.Yu., Blekhman L.I., Vasil'kov V.B., Ivanov K.S. Proceedings of the Mining Institute, 2011, no. 1(192). (in Russ.)
  11. Cundall P.A., Potynondy O., Konietzky H. Manual of the DEM Program System Particle Flow Code in 2 and 3 Dimensions (PFC). Vers. 3.1. Minneapolis, MN, Itasca Consulting Group Inc., 2005.
  12.  http://www.rocky-dem.ru/rocky/review/.
  13. Belokopytov C.A., Lepestov A.E., Mel'nikov A.N. CADmaster, 2014, no. 5(78), pp. 35–39. (in Russ.)
  14.  Schubert W., Jeschke H. New Orders of the Comminution, 2005, no. 4.
  15.  Khanal M., Schubert W., Tomas J. Granular Matter, 2004, no. 5(4), pp. 177–184.
  16. Bruchmuller J., van Wachem B.G.M., Gu S., Luo K.H. Proc. of the 7th Intern. Conf. on Multiphase Flow (ICMF 2010), Tampa, FL, May 30–June 4, 2010.
  17. Preparata F., Shamos M. Computational Geometry: An Introduction, Springer-Verlag, 1985.
  18. Stamboltzis G.A. Mining and Metallurgical Annals, 1989, no. 72–73, pp. 29–38.
  19. Krivtsov A.M. Deformatsiya i razrushenie tverdykh tel s mikrostrukturoy (Deformation and Fracture of Solids with Microstructure), Moscow, 2007, 304 р. (in Russ.)
  20. Schubert W., Khanal M., Tomas J. Intern. Journal of Mineral Processing, 2005, no. 1–2(75), pp. 41–52.