ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2017-60-3-267-274

UDC 528.8:536.33

THERMAL MODES OF SPACE OBJECTS WITH HIGH THERMAL INERTIA

M. M. Pen’kov
A. F. Mozhaisky Military Space Academy; Head of the Academy


A. M. Dzitoev
Military Space Academy n.a. A.F. Mozhaisky, Saint Petersburg, Russia;


Y. V. Lapovok
Military Space Academy n.a. A.F. Mozhaisky, Saint Petersburg, Russia; scientific researcher


S. I. Khankov
Military Space Academy n.a. A.F. Mozhaisky, Saint Petersburg, Russia; chief staff scientist


Read the full article 

Abstract. A method of calculating the temperature of isothermal space object of spherical shape with high thermal inertia, moving in elliptical orbits in the plane of the terminator, is proposed. A criterion is formulated for a space object to be assigned to the class of objects with large thermal inertia. For these objects, the characteristic dimensions are introduced that define the total heat capacity and, accordingly, the constant thermal inertia. The possibility of substitution a real elliptic orbit in the mathematical model by equivalent circular orbit is demonstrated. The fact allows to replace the calculations of transient temperatures of heavy space objects with calculation of their steady-state temperatures almost without loss of accuracy. The approximation leads to solution of algebraic equations instead of the differential equation of the model. Thus, accurate enough values of the height of equivalent circular orbit are obtained depending on the height of the apogee of the initial elliptical orbit.
Keywords: space object, irradiation coefficient, thermal balance of object in a near-earth space, thermal radiation of the Earth, thermal inertia of space object

References:
  1. Gilmore D.G. Spacecraft Thermal Control Handbook, El Segundo, CA, The Aerospace Press, 2002, 836 p.
  2. Cullimore B. et al. SAE, 2002, no. 01, pp. 2445.
  3. Al'tov V.V., Zaletaev S.V., Kopyatkevich R.M., Abrosimov A.I. COSMONAUTICS AND ROCKET ENGINEERING, 2006, no. 3(44), pp. 144–149. (in Russ.)
  4. Furukawa M. J. Thermophysics, 1992, no. 1(6), pp.173–177.
  5. Baeva Yu.V., Lapovok E.V., Khankov S.I. JournalofOpticalTechnology, 2013, no. 5(80), pp. 30–37. (in Russ.)
  6. Baeva Yu.V., Lapovok E.V., Khankov S.I. JournalofOpticalTechnology, 2014, no. 1(81), pp. 17–24. (in Russ.)
  7. Baeva Yu.V., Lapovok E.V., Khankov S.I. Journal of Instrument Engineering, 2013, no. 7(56), pp. 56–61. (in Russ.)
  8. Baeva Yu.V., Lapovok E.V., Khankov S.I. Journal of Instrument Engineering, 2013, no. 12 (56), pp. 51–56. (in Russ.)
  9. Baeva Yu.V., Lapovok E.V., Khankov S.I. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6(86), pp. 67–72. (in Russ.)
  10. Dzitoev A.M., Lapovok E.V., Khankov S.I. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 3(91), pp. 119–125. (in Russ.)
  11. Kamenev A.A., Lapovok E.V., Khankov S.I. Analiticheskie metody rascheta teplovykh rezhimov i kharakteristik sobstvennogo teplovogo izlucheniya ob"ektov v okolozemnom kosmicheskom prostranstve (Analytical Methods of Calculation of the Thermal Modes and Characteristics of own Thermal Radiation of Objects in Near-Earth Space), St. Petersburg, 2006, 186 р. (in Russ.)
  12. Dzitoev A.M., Khankov S.I. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 2(90), pp. 130–136. (in Russ.)
  13. Dzitoev A.M., Lapovok E.V., Khankov S.I. Journal of Instrument Engineering, 2015, no. 12(58), pp. 179–184. (in Russ.)
  14. Dzitoev A.M., Lapovok E.V., Khankov S.I.Proceedings of the Mozhaisky Military Space Academy, 2014, no. 1(642), pp. 115–124. (in Russ.)
  15. Dzitoev A.M., Lapovok E.V., Khankov S.I.Proceedings of the Mozhaisky Military Space Academy, 2014, no. 2(643), pp. 98–106. (in Russ.)
  16. Dzitoev A.M., Khankov S.I. JournalofOpticalTechnology, 2015, no. 4(82), pp. 32–40. (in Russ.)
  17. Trenberth K.E., Fasullo J.T., Keihl J. Bull. Amer. Meteor. Soc., 2009, no. 3(90), pp. 311–323. Gilmore D.G. Spacecraft Thermal Control Handbook, El Segundo, CA, The Aerospace Press, 2002, 836 p.