ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

10
Issue
vol 67 / October, 2024
Article

DOI 10.17586/0021-3454-2017-60-3-275-279

UDC 519.673

LINEAR MODEL FOR THERMAL CONDUCTIVITY OF DISPERSED MATERIALS BASED ON POLYMER BINDER

V. A. Mikheev
BSTU “VOENMEH”; Graduate Student


V. S. Sulaberidze
BSTU “VOENMEH”;


V. D. Mushenko
STOLP Ltd.; General Director


Read the full article 

Abstract. A method of constructing a formula for effective thermal conductivity of composites based on polymer binder (silicone, polyurethane, epoxy) with powder thermally conductive dielectric fillers (quartz, corundum, aluminum nitride, silicon carbide and their paired combinations) is proposed. The method is based on generalization of experimental data, calculation and experimental determination of effective thermal conductivity of aggregates of fillers, and the search of a generalized empirical coefficient in the formula analogous to the Burger formula. Designed to meet previously identified patterns in studies of three-component mixtures and statistical modeling of their effective thermal conductivity, the formula is modified to ensure the conditions of the three limit transitions. For the empirical coefficient in the formula, a power-law dependence from relationship of the thermal conductivity of the filler to the thermal conductivity of the binder is proposed. The results of calculations of effective thermal conductivity with the proposed formula in 95% of cases differ for ±20 % from interpolation values.
Keywords: thermal conductivity, particulate material, polymer binder, modeling, linear model

References:
  1. Missenard A. Conductivité thermique des solides, liquides, gaz et de leurs mélanges, Editions Eyrolles, Paris, 1965.
  2. Chen H., Ginzburg V. V., Yang J., Yang Y., Liu W., Huang Y., Du L., Chen B. Progress in Polymer Science, http://www.sciencedirect.com/science/article/pii/S0079670016000216.
  3. Gao B.Z., Xua J.Z., Pengc J.J., Kanga F.Y., Dua H.D., Lia J., Chianga S.W.,  Xua C.J., Hua N., Ninga X.S. Thermochimica Acta, 2015, no. 20(614), pp. 1–8.
  4. Agrawal A., Satapathy A. Intern. J. of Thermal Sciences, 2015, no. 89, pp. 203–209.
  5. Xua J., Gaoa B., Dua H., Kanga F. Intern. J. of Thermal Sciences, 2016, no. 104, pp. 348–356.
  6. Orlov A.I. Obobshchennaya provodimost' geterogennykh sred i sterzhnevykh sistem (The Generalized Conductivity of Heterogeneous Environments and Rod Systems),Extended abstract of candidate’s thesis,Obninsk, 2009.
  7. http://www.science-education.ru/ru/article/ view?id=19855.
  8. Chudnovskiy A.F. Teplofizicheskie kharakteristiki dispersnykh materialov (Thermophysical Characteristics of Disperse Materials), Moscow, 1962. (in Russ.)
  9. Dul'nev G.N., Zarichnyak Yu.P. Teploprovodnost' smesey i kompozitsionnykh materialov (Heat Conductivity ofMixes and Composite Materials), Leningrad, 1974. (in Russ.)
  10. Sulaberidze V.Sh. Effektivnost' primeneniya napolnitelya iz polykh steklyannykh mikrosfer dlya povysheniya kachestva teploizolyatsii zdaniy (The Efficacy of a Filler of Hollow Glass Microspheres to Improve the Quality of Thermal Insulation of Buildings), St. Petersburg, 2014. (in Russ.)
  11. Mikheev V.A., Sulaberidze V.Sh., Mushenko V.D. Journal of Instrument Engineering, 2016, no. 7(59), pp. 584–591. (in Russ.)