DOI 10.17586/0021-3454-2017-60-5-431-439
UDC 537.312.52:544.537
USING LASER-INDUCED MICROPLASMA FOR MULTILEVEL PHASE PLATE FABRICATION
ITMO University, Department of Laser Technologies; student
R. A. Zakoldaev
ITMO University, Department of Laser Technologies and Applied Ecology, St. Petersburg; Graduate Student
Сергеев М. М.
Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация; научный сотрудник
G. K. Kostyuk
ITMO University, Saint Petersburg, 197101, Russian Federation; Scientific Researcher
Read the full article
Abstract. Application of the method of processing of transparent materials with laser-induced microplasma to create a multilevel phase plate on fused quartz surface is demonstrated. Optimization of the method for the existing laser system "Minimarker 2" based on Yb-fiber laser with a nanosecond pulse duration (50-200 NS) is described. A software is developed which allows to link parameters of laser treatment with deep relief microstructures, as well as to generate a multilevel phase plate in automatic mode. Based on the results, samples of layered phase plates with binary and discrete structure for testing with He-Ne laser setup are recorded. Comparative analysis of binary and discrete phase plates applied as homogenizers of He-Ne laser radiation is carried out. It is shown that a more uniform distribution of intensity in the beam cross-section is achieved by using discrete phase plate. The proposed method of laser writing of diffractive elements is reported to allow manufacturing of phase plates with a relief depth from 0.1 to 15.0 μm with a step of 50 nm and the minimum size of the cells of 200 μm.
Keywords: plasma, fused silica, phase plate, homogenization, laser micro-processing
References:
References:
- Yang C. et al. Opt. Express, 2013, no. 21(9), рр. 11171–11180.
- Veron D. et al. Opt. Communications, 1988, no. 65(1), рр. 42–46.
- Kato Y. et al. Phys. Rev. Lett., 1984, no. 53(11), рр. 1057.
- Wlodarczyk K.L. et al. Appl. Opt., 2010, no. 49(11), рр. 1997–2005.
- Lewis C. et al. Rev. of Scientific Instruments, 1999, no. 70(4), рр. 2116–2121.
- Yang C. et al. Appl. Opt., 2008, no. 47(10), рр. 1465–1469.
- Bansal N.P., Doremus R.H. Handbook of Glass Properties, Elsevier, 2013.
- Baglin J. Appl. Surface Science, 2012, no. 258(9), рр. 4103–4111.
- Beresna M., Gecevičius M., Kazansky P.G. Advances in Optics and Photonics, 2014, no. 6(3), рр. 293–339.
- Lorenz P., Ehrhardt M., Zimmer K. Appl. Surface Science, 2012, no. 24(258), рр. 9742–9746.
- Zakoldaev R.A. et al. J. of Laser Micro Nanoengineering, 2015, no. 10(1), рр. 15–19.
- Kostyuk G. et al. Optics and Lasers in Engineering, 2015, no. 68, рр. 16–24.
- Zakoldaev R.A. et al. Journal of Instrument Engineering, 2016, no. 5(59), рр. 400–406. (in Russ.)
- Stevenson R. et al. Opt. Lett., 1994, no. 19(6), рр. 363–365.
- Cumme M. et al. Advanced Optical Technologies, 2015, no. 4(1), рр. 47–61.
- Patent RU 2016612921, Massiv-menedzher “LIBBH Pipe-line” (Array Manager “LIBBH Pipe-line”), Veyko V.P., Rymkevich V.S., Koval'V.V., Kostyuk G.K., Karlagina Yu.Yu., Zakoldaev R.A., Sergeev M.M. Published 14.03.2016. (in Russ.)