ISSN 0021-3454 (print version)
ISSN 2500-0381 (online version)
Menu

11
Issue
vol 67 / November, 2024
Article

DOI 10.17586/0021-3454-2017-60-5-474-481

UDC 621.373.826: 621.389

LASER PROCESSING OF GLASSY CARBON TO OBTAIN THE EFFECTIVE EMITTING STRUCTURES

A. I. Popov
Saratov State Technical University, Department of Theoretical Mechanics; Post-Graduate Student;


T. N. Sokolova
Saratov State Technical University, Department of Electronic Machine Building and Welding;


L. E. Surmenko
Saratov State Technical University, Department of Electronic Machine Building and Welding; Post-Graduate Student;


Y. V. Chebotarevsky
Yuri Gagarin State Technical University of Saratov, Department of Applied Mathematics and System Analysis; Professor


D. A. Bessonov
Gagarin Saratov State Technical University, Department of Instrument Making; Post-Graduate Student


V. I. Shesterkin
Scientific-Production Enterprise "Almaz" JSC; Leading Scientist


Read the full article 

Abstract. Special techniques and algorithms of laser forming of emitting structures on the glassy carbon SU-2000 surface are described. The structures of pillar-shaped tips with semicircular apexes and the structures of separate needle-shaped tips with a high aspect ratio are considered. Formation of the tips on the plate is carried out in several stages, each of which used a separate bypass program of the treated surface by the laser beam and different processing parameters. To create the pillar-shaped tips the sequential layerby-layer laser milling is carried out: on the first stage a truncated cone with a flat top is formed, on the second a rounding is created, on the third micro-structuring of the surface of spherical tips is performed. Formation of needle-shaped tips is carried out also in three stages: firstly, the rough milling of the tip cylinder is carried out, on the second stage of thin processing the needle-shaped tip is milled, and on the third stage laser cleaning of the tip surface is implemented. As a result, the matrixes of microtips are obtained with packing density N≈2×105 cm-2 on the spherical apexes of field-emission cathodes and the needle-shaped tips with an aspect ratio about 500.
Keywords: лазерное фрезерование, очистка, стеклоуглерод, автоэмиссионный катод, острия, столбчатая и игольчатая форма, эмиссия

References:
  1. Egorov N.V., Sheshin E.P. Avtoelektronnaya emissiya. Printsipy i pribory (Field Emission. The Principles and Devices), Dolgoprudnyy, 2011, 704 р. (in Russ.)
  2. Velásquez-García L.F., Akinwande A.I. Nanotechnology, 2008, no. 40(19), рр. 405305. DOI:http://dx.doi.org/10.1088/0957-4484/19/40/405305.
  3. Górecka-Drzazga A., Cichy B.J., Szczepańska P., Walczak R., Dziuban J.A. Bulletin of the Polish Academy of Sciences, Technical Sciences, 2012, no. 1(60), рр. 13–17. DOI: 10.2478/v10175-012-0003-z.
  4. Lewellen J.W., Noonan J. Phys. Rev. ST Accel. Beams, 2005, no. 3(8), рр. 033502-1-9. DOI: https://doi.org/10.1103/PhysRevSTAB.8.033502.
  5. Bushuev N.A., Glukhova O.E., Grigor'ev Yu.A. et al. Technical Physics, 2016, no. 2(86), рр. 134–139. (in Russ.)
  6. Lawrowski R.D., Prommesberger C., Langer C., Dams F., Schreiner R. Advances in Materials Science and Engineering, 2014, no. 2014, Art. ID 948708, DOI:10.1155/2014/948708.
  7. Patent RU 1738013, Н01j1/30. Sposob formirovaniya topologii preimushchestvenno mnogoostriynogo avtokatoda (Way of Formation of Topology of the Field Radiating Cathode Mainly with Several Edges), Grigor'ev Yu.A., Vasil'kovskiy S.V., Shesterkin V.I., Yartseva Z.A., Published 06.04.93.
  8. Zhao Q.Z., Ciobanu F., Wang L.J. J. Appl. Phys., 2009, no. 8(105), рр. 083103. DOI: http://dx.doi.org/ 10.1063/1.3097391
  9. Kuhnke M., Lippert Th., Ortelli E., Scherer G.G., Wokaun A.Thin Solid Films, 2004, no. 453–454, рр. 36–41. DOI: 10.1016/j.tsf.2003.11.156.
  10. Chesnokov D.V., Chesnokov V.V. Journal of Instrument Engineering, 2009, no. 6(52), рр. 69–74. (in Russ.)
  11. Abramov D.V., Arakelyan S.M., Kucherik A.O., Kutrovskaya S.V., Prokoshev V.G. Quantum Electronics, 2007, no. 11 (37), рр. 1051–1054. (in Russ.)
  12. Chesnokov V.V., Chesnokov D.V., Kochkarev D.V. Interekspo GEO-Sibir'-2013, IX Intern. Scientific Congress, Novosibirsk, 2013, vol. 1, рр. 130–142.(in Russ.)
  13. Veyko V.P., Dyshlovenko S.S., Skvortsov A.M. Diagnostika i funktsional'nyy kontrol' kachestva opticheskikh materialov (Diagnostics and Functional Quality Control of Optical Materials), St. Petersburg, 2004, pt. 2, рр. 138–153. (in Russ.)
  14. Bessonov D.A., Konyushin A.V., Popov I.A., Sokolova T.N., Surmenko E.L. Applied Photonics, 2014, no. 1, рр. 112–119. (in Russ.)
  15. Sokolova T.N., Surmenko E.L., Chebotarevsky Yu.V. et al. Proc. of SPIE, 2013, no. 9065, рр. 90650O. DOI: 10.1117/12.2053522.
  16. Sokolova T.N., Surmenko E.L., Popov I.A., Chebotarevskiy Yu.V. Journal of Instrument Engineering, 2014, no. 6(57), рр. 47–53. (in Russ.)
  17. Sheshin E.P. Struktura poverkhnosti i avtoemissionnye svoystva uglerodnykh materialov (Surface Structure and Field Emission Properties of Carbon Materials), Moscow, 2001, 287 р. (in Russ.)
  18. Smith R.С., Carey J.D., Forrest R.D., Silva S.R.P. J. of Vacuum Science Technology. B, 2005, no. 2(23), рр. 632–635. DOI:http://dx.doi.org/10.1116/1.1880072.
  19. Shesterkin V.I., Sokolova T.N., Bessonov D.A. et al. Journal of Communications Technology and Electronics, 2016, no. 9(61), рр. 896–904. (in Russ.)
  20. Bessonov D.A., Sokolova T.N., Surmenko E.L. et al. J. of Physics Conf. Series, 2016, no. 1(741), рр. 012166. DOI: 10.1088/1742-6596/741/1/012166.