DOI 10.17586/0021-3454-2017-60-5-474-481
UDC 621.373.826: 621.389
LASER PROCESSING OF GLASSY CARBON TO OBTAIN THE EFFECTIVE EMITTING STRUCTURES
Saratov State Technical University, Department of Theoretical Mechanics; Post-Graduate Student;
T. N. Sokolova
Saratov State Technical University, Department of Electronic Machine Building and Welding;
L. E. Surmenko
Saratov State Technical University, Department of Electronic Machine Building and Welding; Post-Graduate Student;
Y. V. Chebotarevsky
Yuri Gagarin State Technical University of Saratov, Department of Applied Mathematics and System Analysis; Professor
D. A. Bessonov
Gagarin Saratov State Technical University, Department of Instrument Making; Post-Graduate Student
V. I. Shesterkin
Scientific-Production Enterprise "Almaz" JSC; Leading Scientist
Read the full article
Abstract. Special techniques and algorithms of laser forming of emitting structures on the glassy carbon SU-2000 surface are described. The structures of pillar-shaped tips with semicircular apexes and the structures of separate needle-shaped tips with a high aspect ratio are considered. Formation of the tips on the plate is carried out in several stages, each of which used a separate bypass program of the treated surface by the laser beam and different processing parameters. To create the pillar-shaped tips the sequential layerby-layer laser milling is carried out: on the first stage a truncated cone with a flat top is formed, on the second a rounding is created, on the third micro-structuring of the surface of spherical tips is performed. Formation of needle-shaped tips is carried out also in three stages: firstly, the rough milling of the tip cylinder is carried out, on the second stage of thin processing the needle-shaped tip is milled, and on the third stage laser cleaning of the tip surface is implemented. As a result, the matrixes of microtips are obtained with packing density N≈2×105 cm-2 on the spherical apexes of field-emission cathodes and the needle-shaped tips with an aspect ratio about 500.
Keywords: лазерное фрезерование, очистка, стеклоуглерод, автоэмиссионный катод, острия, столбчатая и игольчатая форма, эмиссия
References:
References:
- Egorov N.V., Sheshin E.P. Avtoelektronnaya emissiya. Printsipy i pribory (Field Emission. The Principles and Devices), Dolgoprudnyy, 2011, 704 р. (in Russ.)
- Velásquez-García L.F., Akinwande A.I. Nanotechnology, 2008, no. 40(19), рр. 405305. DOI:http://dx.doi.org/10.1088/0957-4484/19/40/405305.
- Górecka-Drzazga A., Cichy B.J., Szczepańska P., Walczak R., Dziuban J.A. Bulletin of the Polish Academy of Sciences, Technical Sciences, 2012, no. 1(60), рр. 13–17. DOI: 10.2478/v10175-012-0003-z.
- Lewellen J.W., Noonan J. Phys. Rev. ST Accel. Beams, 2005, no. 3(8), рр. 033502-1-9. DOI: https://doi.org/10.1103/PhysRevSTAB.8.033502.
- Bushuev N.A., Glukhova O.E., Grigor'ev Yu.A. et al. Technical Physics, 2016, no. 2(86), рр. 134–139. (in Russ.)
- Lawrowski R.D., Prommesberger C., Langer C., Dams F., Schreiner R. Advances in Materials Science and Engineering, 2014, no. 2014, Art. ID 948708, DOI:10.1155/2014/948708.
- Patent RU 1738013, Н01j1/30. Sposob formirovaniya topologii preimushchestvenno mnogoostriynogo avtokatoda (Way of Formation of Topology of the Field Radiating Cathode Mainly with Several Edges), Grigor'ev Yu.A., Vasil'kovskiy S.V., Shesterkin V.I., Yartseva Z.A., Published 06.04.93.
- Zhao Q.Z., Ciobanu F., Wang L.J. J. Appl. Phys., 2009, no. 8(105), рр. 083103. DOI: http://dx.doi.org/ 10.1063/1.3097391
- Kuhnke M., Lippert Th., Ortelli E., Scherer G.G., Wokaun A.Thin Solid Films, 2004, no. 453–454, рр. 36–41. DOI: 10.1016/j.tsf.2003.11.156.
- Chesnokov D.V., Chesnokov V.V. Journal of Instrument Engineering, 2009, no. 6(52), рр. 69–74. (in Russ.)
- Abramov D.V., Arakelyan S.M., Kucherik A.O., Kutrovskaya S.V., Prokoshev V.G. Quantum Electronics, 2007, no. 11 (37), рр. 1051–1054. (in Russ.)
- Chesnokov V.V., Chesnokov D.V., Kochkarev D.V. Interekspo GEO-Sibir'-2013, IX Intern. Scientific Congress, Novosibirsk, 2013, vol. 1, рр. 130–142.(in Russ.)
- Veyko V.P., Dyshlovenko S.S., Skvortsov A.M. Diagnostika i funktsional'nyy kontrol' kachestva opticheskikh materialov (Diagnostics and Functional Quality Control of Optical Materials), St. Petersburg, 2004, pt. 2, рр. 138–153. (in Russ.)
- Bessonov D.A., Konyushin A.V., Popov I.A., Sokolova T.N., Surmenko E.L. Applied Photonics, 2014, no. 1, рр. 112–119. (in Russ.)
- Sokolova T.N., Surmenko E.L., Chebotarevsky Yu.V. et al. Proc. of SPIE, 2013, no. 9065, рр. 90650O. DOI: 10.1117/12.2053522.
- Sokolova T.N., Surmenko E.L., Popov I.A., Chebotarevskiy Yu.V. Journal of Instrument Engineering, 2014, no. 6(57), рр. 47–53. (in Russ.)
- Sheshin E.P. Struktura poverkhnosti i avtoemissionnye svoystva uglerodnykh materialov (Surface Structure and Field Emission Properties of Carbon Materials), Moscow, 2001, 287 р. (in Russ.)
- Smith R.С., Carey J.D., Forrest R.D., Silva S.R.P. J. of Vacuum Science Technology. B, 2005, no. 2(23), рр. 632–635. DOI:http://dx.doi.org/10.1116/1.1880072.
- Shesterkin V.I., Sokolova T.N., Bessonov D.A. et al. Journal of Communications Technology and Electronics, 2016, no. 9(61), рр. 896–904. (in Russ.)
- Bessonov D.A., Sokolova T.N., Surmenko E.L. et al. J. of Physics Conf. Series, 2016, no. 1(741), рр. 012166. DOI: 10.1088/1742-6596/741/1/012166.